
A Context-Aware Adaptive Rendering System for 
User-Centric Pervasive Computing Environments 

N.A.Nijdam, S. Han, B. Kevelham, N. Magnenat-Thalmann 

MIRALab, University of Geneva 
7, rte de Drize, 1227 Carouge, Geneva, Switzerland 

 
Abstract� In user-centric pervasive computing environments 

where users can utilize nearby heterogeneous devices anytime 
and anywhere, context-aware remote rendering is essential. It is 
impractical not only to manually copy 3D content from one 
device to another whenever a user moves, but also to render 
complex 3D data locally on resource-limited devices, such as 
mobile phones and PDAs. In this paper, we propose a context-
aware adaptive rendering system which visualizes 3D content 
with customized user interfaces dynamically adapting to current 
device contexts such as processing power, memory size, display 
size, and network condition at runtime, while preserving the 
interactive performance of the 3D content. To increase the 
responsiveness of remote 3D rendering, we use a mechanism 
which temporally adjusts the quality of visualization, adapting to 
the current device context. By adapting the quality of 
visualization in terms of image quality, the overall responsiveness 
and frame-rate are maintained no matter the resource status. In 
order to overcome inevitable physical limitations of display 
capabilities and input controls on client devices, we provide a 
user interface adaptation mechanism which dynamically binds 
operations provided by the 3D application and user interfaces 
with pre-described device and application profiles. We 
prototyped our adaptive rendering system and experimented 
with a specific scenario in user-centric pervasive environments.  

I. INTRODUCTION 

Recent advances in mobile devices and networks have 
enabled a new wave of user-centric multimedia convergence 
which puts the mobile users in the center of a rich and 
interactive world with 3D content. They can utilize diverse 
devices anywhere and anytime [5]. Considerable efforts have 
been made for nomadic access of multimedia in mobile 
computing [1]. This nomadic access however may limit users 
in that it forces them to use their mobile devices as a single 
point of multimedia access. It is also impractical to manually 
transmit 3D contents from one device to another whenever a 
user switches devices in order to make users to utilize diverse 
device because not only does it distract users to copy 3D 
content but also some resource-limited devices, such as 
mobile phone and PDA, may not render complex 3D data 
locally. To overcome resource limitations of mobile devices, a 
data-centric approach [8], with which a client device used 
semantically equivalent 3D data depending on different device 
capabilities, has been used. However, this approach cannot 
guarantee consistency of modified 3D content while a user is 
switching across diverse devices. Adaptive remote rendering 
approaches [4][11] have been proposed to seamlessly access 

3D data with heterogeneous devices. They adaptively generate 
size of images and frame rate based on the preconfigured 
client rendering capabilities, display size and network 
conditions on a dedicated server and stream to the client 
devices. They, however, decrease interactive performance of 
3D content not only because it takes long response time to get 
feedbacks if 3D content is fully rendered remotely and 
streamed back to a client but also because they do not support 
to adapt dynamic context changes such as network bandwidth 
at runtime. Hybrid rendering approaches [3][16] maximize the 
utilization of resources on the server-side by delegating the 
rendering of highly complex 3D scenes to a dedicated server. 
They can support the client's interaction with 3D content even 
in the case of temporal network failure. However, they don't 
enable the users to exploit diverse devices adapting to the 
current contexts at runtime. Clients therefore still need to 
transfer large amounts of 3D data to the server on-demand. 
They also do not consider client device capabilities, such as 
display size and input controls, to represent the user interface. 
It is impractical to provide complex full-featured controls on 
resource-limited devices such as PDA and smart phone with 
small display.  

In this paper, we propose a context-aware adaptive 
rendering system which visualizes 3D content and a user 
interface, while dynamically adapting to the current context 
such as device availability in the current location and their 
capabilities, i.e., processing power, memory size, display size, 
and network condition, while preserving interactive 
performance of 3D contents. To increase responsiveness of 
remote 3D visualization, we use a mechanism which adjusts 
quality of visualization adapting to the current device contexts.  
By adapting the quality of visualization in terms of image 
quality, the overall responsiveness and frame-rate is 
maintained no matter the resource status. To overcome 
inevitable physical limitations of display and input controls on 
client devices, we provide an interface adaptation mechanism 
which dynamically binds operations provided by the 3D 
application and user interfaces with pre-described device and 
application profiles.  

The remainder of this paper is organized as follows: In 
section 2 we analyze the technical requirements of context-
aware adaptive rendering with a specific scenario. In Section 3 
we analyze the pros and cons of related work in remote and 
adaptive rendering systems. Section 4 describes our proposed 
adaptive rendering system which meets the requirements 



described in Section 2. Section 5 describes our 
implementation and discusses the results from our 
experiments. Conclusion and future work are discussed in 
Section 6. 

II. TECHNICAL REQUIREMENTS 

While there are many possible scenarios, we present a 
specific scenario in this section in order to make the problems 
more concrete and to describe key challenging issues 
regarding interactive 3D content visualization in user-centric 
pervasive computing environments.  

"Chloe, who is an undergraduate student, is attending a 
course at the university. After the class, and while on her way 
to the library, she starts to review the lesson by manipulating 
3D course material on her PDA. After arriving at the library, a 
high-end desktop PC is at her disposal to review 3D content 
without reinitializing her 3D manipulation session. On her 
way back home she continues to browse through the 3D 
course material with her smart phone. Once she comes back 
home, she completes the 3D manipulation on her PC." (Fig. 1). 

 Fig. 1  Envisioned scenario. 

Two key technical issues should be addressed to enable this 
scenario. The first issue is a polymorphic presentation 
adaptation to overcome resource heterogeneity of the client 
devices while providing suitable responsiveness to users. This 
means that the presentation of 3D content, i.e., frame size and 
frame rate, has to be dynamically adapted to the current 
device context such as processing power, memory size, 
display size, and network condition at runtime. Presentation 
on client devices can be adjusted with pre-configured device 
profiles but the contexts of the devices vary over time and this 
variance is nondeterministic, which results in clients being 
under- or overloaded. Therefore, it requires a presentation 
adaptation scheme that dynamically adapts the current  
presentation context by continuously observing the underlying 
device context such as available network bandwidth and 
computational resources. The second issue comes from 
inevitable physical heterogeneity in the capabilities of display 
and input controls on the client devices. This requires dynamic 
interface adjustment based on the current display instead of 
providing complex full-featured controls on resource-limited 
devices such as PDAs and smart phones with small display. 
There are typically three types of adaptation. First, user inputs 
with devices (mouse, keyboard, pen, etc.) should be 
dynamically mapped to user interface controls. It implies that 
user inputs are interpreted differently based on input devices. 
Second, different user interfaces could be represented 

depending on client capabilities. A limited set of functionality 
can be displayed on the PDA compared with high-end devices. 
Third, user interfaces (controls) can be dynamically mapped 
to simulation and rendering functionality.  

III. RELATED WORK 

Several adaptive rendering mechanisms 
[3][4][8][10][11][16] have been proposed to overcome 
resource heterogeneity. Krebs et al. [8] proposed a data-
centric approach where users are using the same or 
semantically equivalent 3D data with heterogeneous devices. 
It is composed of three tiers. The presentation tier contains the 
controller and view parts of the MVC paradigm [7]. The 
domain tier contains application semantics as well as data. 
The manifold tier glues the presentation and domain tier. 
Device heterogeneity is handled by pre-described profiles in 
XML/XSL. The XSL document maps elements in the XML 
document to nodes in the result tree so that the renderer knows 
how to render them. Parsing the common XML file and the 
local XSL file generates the view at a particular user�s 
machine. However, this approach is not able to guarantee the 
consistency of modified 3D data. It furthermore takes a long 
time to transfer the 3D data when a user moves across diverse 
devices. Preda et al. [11] proposed a formal model of adaptive 
rendering for multi-user 3D games. They defined a set of 
transformations for adaptation to heterogeneous client devices, 
rendering, coding, simplification, and modeling and possible 
process chains for visual adaptation. However, they did not 
provide any mechanism to dynamically adapt the current 
context at runtime and to increase interactive performance for 
users. To increase interactive performance of 3D simulation 
and rendering, a hybrid rendering approach in which a 
common subset of 3D models are rendered on both the client 
and server sides, could be utilized. Engel et al. [3] proposed a 
system which maximized utilization of resources on server-
side by delegating rendering of highly complex 3D scene to a 
dedicated server. It, however, still limited users to exploit 
diverse devices adapting to the current contexts because a 
client needed to transfer large amount of 3D data to server on-
demand. Weaver et al. [16] proposed a perceptually adaptive 
rendering system for immersive virtual reality which reduced 
the computational burden by rendering detail only where it is 
needed. Eccentricity from the user's point of gaze is used to 
determine when to render detail in an immersive virtual 
environment, and when it can be omitted in order to display 
higher quality environments without reducing interactivity.   

IV. CONTEXT-AWARE ADAPTIVE RENDERING SYSTEM 

In order to support polymorphic visualization of 3D content 
on heterogeneous devices, our adaptive rendering system 
exploits the PSLA model [6], in which an interactive 3D 
application can be typically divided into four parts; 
presentation, semantics, link, and adapter. A presentation 
supports the interface between a user and the shared semantics 
as well as the visualization of 3D contents. The semantics are 
organized into software modules which encapsulate the 3D 
content. The presentation and semantics are dynamically 



bound with adapter at initialization as well as runtime. Our 
context-aware adaptive rendering system is composed of five 
logical layers as shown in Fig 2. The network layer provides 
not only the low level connection between the server and 
client using TCP or UDP but also the transparent change of 
subscription end-points for seamless subscription to 3D 
content when a user switches one device to another. The 
communication abstraction layer, which is composed of two 
major components, being the communication manager and 
event manager, abstracts low-level events to high-level 
(application-level) events in order to mask  low-level events 
generated by heterogeneous devices. It also marshals/un-
marshals incoming events and redirects them to the 
appropriate components. The adaptation layer on the client 
side has two components, the context manager and resource 
manager. The resource manager constantly monitors the 
current state of the resources in terms of application 
performance. Based on the information provided by the 
resource manager, the context manager can determine the 
optimal performance by taking adaptation decisions. The 
decisions are translated into events and sent to the adaptation 
manager on server-side so that it executes the appropriate 
adaptation strategy. The presentation layer contains the render 
engines. On the server-side, a 3D rendering engine renders 3D 
content and generates images of different quality based on 
current client resource capability. To transmit images to a 
client, the frame-buffer is taken into the compression manager. 
This generates a stream of compressed frames (similar to a 
video stream) that is being decompressed on the client side 
and displayed using a 2D rendering engine. The dynamic state 
management on the server-side maintains the current state of 
the 3D simulation in order to switch from devices without 
losing the current simulation. In the application layer the 
application logic is responsible for client side handling of 
input and overall client side functionalities. On the server side 
it is the �data storage� containing the 3D content that is 
needed for the 3D rendering and simulation. 

 
Fig. 2  Overall architecture of context-aware adaptive rendering system. 

A. Run-time Presentation Adaption Control 

We mainly focus on increasing responsiveness of 3D 
content taking into account the current context of devices. 
This means that whenever the user performs an action, the 
response to this action should be shown to the user within a 
certain amount of time. Fig. 3 shows the typical flow of the 
remote rendering with interaction. The time taken between the 
creation of an event and getting the results back to the user is 
the time that we reduce with our adaptation manager. The 
three main stages are: send the events, perform simulation 
cycle and send the results.  

 
Fig. 3  Round trip time, from input to visual response. 

Assuming that the simulation is fast enough to deliver a 
response within a certain amount of time, the main adaptation 
takes place after the simulation step. Here a compression 
algorithm is used in order to reduce the amount of data that 
needs to be transferred. For a thin client this is the 
compression of the image-data into an image/video stream. 
For hybrid or full client rendering, the system compresses the 
actual 3D data (e.g. lossless compression of vertices). In Fig 4, 
we can see the several adaptation points given by diamond 
shaped objects. 

 
Fig. 4  Adaptation points, denoted by the diamond shaped objects. 

The dynamic adaptation is aimed at the regulation of the 
output data. We increase the perception of visual interaction 
with a remote rendered 3D environment by introducing a 
'temporal adjustment of presentation quality' adaptation 
mechanism. By decreasing the quality, the decoding speed is 
increased on the client side. Additionally for thin-clients the 
frame-rate is increased. Whenever the user interacts with a 3D 
object, the actions are displayed faster but at the expense of 
image quality. The decrease of image quality is achieved by 
switching to a stronger compression algorithm (if the 
decoding side can keep up), by changing compression 
parameters and/or if the client supports fast image scaling the 
actual image resolution can be reduced and up-scaled on the 
client side. We also use another approach,which detects 
changes in the rendered frame and compares it with previous 
rendered frames. If the amount of difference from the previous 
frame is greater than a certain threshold the adaptation control 
changes the compression strategy by reducing the quality 
temporarily. The third approach is the encapsulation of 



expected load for functions or performance indicators. This 
can be done manually or at run-time. Manually by reading the 
load factor for a function from a predefined configuration file. 
This is the same configuration file that defines which events 
are bound to specific functions. The run-time approach is a 
profiler algorithm that, whenever a function is executed, 
(based on an incoming event) measures the time that is needed 
for full execution. The difficulty here is that a function itself 
can be very fast, but the effects of the function (influencing 
the simulation) can result in longer times. Either by 
predefining the load factor or by adjusting the load factor 
through the measurement of function execution another 
feature can be introduced, namely load predection.  

By anticipating the actions and their resulting timeframe for 
user feedback the level of adaptation can be controlled to 
achieve a constant time cycle. Another, more straight-forward, 
approach to keep a constant time cycle is to keep a constant 
data rate. This does not take into consideration the quality of 
the network but only the amount of data being sent. It can be 
achieved by fixing a specific frame rate and keeping a 
threshold on the data size for each frame. If the size of a frame 
after compression is higher than a certain threshold the 
compression quality is lowered until the threshold is met again. 
By default, we use this passive adaptation rule. However, 
depending on the device profile a preferred frame-size is 
given, which is the actual data size for a frame (after 
compression) to be sent to the client. An extension to the 
dynamic adaptation control is based on the network load and 
should be balanced together with the frame rate. The whole 
procedure is shown in Fig. 5. 

 
Fig. 5  Adaptation manager: the adaptation control. 

B. Dynamic Interface Adaptation 

In order to overcome the physical heterogeneity limitations 
in display capabilities and input controls on client devices, we 
provide a dynamic user interface reconfiguration mechanism 
for interaction with 3D content. It means to change the way 
the interface is presented to the user (big screen or small 
screen brings several design issues with it) and to adapt to 
input capabilities of the client device. 

 
Fig. 6  Dynamic mapping of user interface. 

Fig. 6 shows the details of dynamic mapping. Each Element 
is an event handler, and is listening to certain events to which 
it can respond by creating new events. Each event received 
from an input device is first handled by the Client Event 
handler, this module determines if the event should be handled 
by the client or the server. Then on the server or client side, 
the raw event is sent to the corresponding Element that is 
listening to the device. An Element can have a representation, 
which can be a form of visualization in 2D or 3D, but also in 
the form of audio or any other form of feedback. The handling 
and control of the representation is performed by the logic that 
is assigned to the specific Element. The representation of the 
element is loosely coupled and therefore it may reside on the 
server or client side. According to the Element logic, the raw 
event can be translated into higher level events. These can be 
a representation update, simulation, adaptation or any other 
application specific event. This makes an Element a dynamic 
building block that is used by the User Interface adaptation 
manager to construct and modify the user interface whenever 
needed. For example a combo box on a pc is displayed in 2D 
using Windows, GTK or QT native widgets, but it can also be 
displayed as a ring selection in 3D, using a different 
representation but the same logic, and accepting the same 
events, or accept different events but with the same logic.  

Currently there are three forms of user-interface-interaction 
implementations, two with a visual representation and one 
with no �interface� visualization as follows:  

Interaction with 2D interface: The default 2D interface 
providing windows, buttons, text fields and other widgets with 
its entire well established visual feedback mechanism. This is 
an intermediate layer between input device and the 3D 
simulation, providing the means to perform complex 
operations and provide the necessary data for it. For example 
a textbox and a button, might update simulation parameters, 
which will be more dynamic than an �increase� and 
�decrease� button, but at the expense of more user interactions 
(typing and confirmation with a mouse-click or keyboard 
command, instead of a single click). 

Interaction with 3D interface: This form of interaction is 
integrated into the 3D environment and therefore provides the 
user with direct interaction with 3D objects This is usually 
achieved by means of a 3D pointer, which is able to hover 
over 3D objects and whenever the user executes a command 
to select or perform some other action it is directly executed 
on the specific object. Aside from the input device, this 



interaction mechanism boils down to �see the 3D object�, 
�select the object�, �execute operation on object� and �wait for 
visual feedback�. The visual feedback should be direct if the 
simulation behind is a real-time simulation. In essence this 
approach is similar to the 2D interaction mechanism, but by 
adding one dimension more it provides us with new abilities 
as to how we perceive the interaction and handling of virtual 
objects. The implementation of a 3D interface feedback may 
have similar features as its 2D version; for example selected  
objects should be highlighted, or just by hovering over objects 
information on them should be displayed. This feedback is 
different from the 3D simulation itself, as it doesn�t intervene 
with the simulation, but just provides visual 3D feedback.  

Interaction with Implicit Inputs: It has input device 
bindings directly to an event that changes simulation 
parameters without showing it in the sense of an interface. For 
example 3D movement, the camera is being moved around in 
the 3D world. The visual feedback is that the user gets the 
impression of moving in a virtual world, but there is no direct 
feedback from any object in the world. It is exactly the same 
as the 3D interaction, but without a direct 3D �interface� 
implementation. All of these interaction mechanisms can be 
used with any kind of human interface device (HID), such as a 
pointing device (mouse) or keyboard etc. Each input device 
can be coupled differently according to its input capabilities, 
the application capabilities and user preferences. The binding 
between the application and device can be hardcoded and to 
some degree the user can set its own preferences. However in 
order to switch from one device to another, the interface 
mapping needs to adapt accordingly. Another form of 
adaptation is dynamic coupling in which coupling changes 
depending on the current context. For example if the 
connection between device and server is very bad, than 3D 
rotation can be limited from smooth rotation to fixed rotation 
(for example front, side, top view). 

V. IMPLEMENTATION AND EXPERIMENT RESULT 

A. Implementation 

We used a seamless user mobility support mechanism [12] 
in the network layer and a customized version of the Atlas 
framework [9], which is a scalable network framework for 
distributed virtual environments, for the communication 
abstraction layer in order to handle the image/video stream 
and events. Inputs from a client device are, depending on the 
application, translated into local events or server events. For 
example, a simple rotation of a 3D object, which is done by 
clicking and dragging the mouse, is executed locally or 
remotely depending on the device used. If the device has 
render capabilities and is able to render the 3D object locally, 
then the rotation can be performed locally, otherwise the event 
is sent to the server and rotation takes place in the remotely 
rendered 3D environment. If the action is performed locally 
then the results of the action still need to be synchronized with 
the server, however this can be achieved by synchronizing 
based on end result, instead of micro updates for each device 
event (like mouse click, move etc).  

The 3D rendering engine is based on Open Scene Graph 
(OSG) renderer [18], It is based on a scene graph approach 
which makes it possible to dynamically change the rendering 
procedure based on the client device capabilities. This can 
range from partial rendering (part on server and part on client), 
representation (different shading style, e.g. realistic, cell 
shaded etc) and specific adaptation algorithm that are tightly 
coupled with the rendering (off-screen rendering, layered 
rendering, color channel manipulations). On the client side, a 
similar engine is used, if the client device is capable of 
rendering 3D data. However it also provides other means to 
render the image/video, where it simply is "blitting" the 
incoming image data onto the screen. The image can contain 
meta-information about its size and location on the screen, in 
order to only update a smaller region on the screen. This 
mechanism makes it possible for low end devices to view 
complex data that otherwise could not be rendered. Currently 
the blitting operation is implemented in three ways, using a 
�software� algorithm (SDL) [20] using OpenGL with the 
glDrawPixel command and OSG by rendering to a texture, 
which is used on a full screen quad. The Resource manager 
and context manager are handling the adaptation. The 
resource manager is registering the network bandwidth and, 
based on speed and packet throughput, determines the time 
needed to render the incoming data and the time needed for 
decompressing the image data. The context manager uses this 
information and generates, according to a set off heuristic 
rules, adaptation events. An event contains information about 
a function or action that has to be executed. An example of the 
heuristic rules is the following: based on network throughput 
the optimal size for a compressed image is calculated, then an 
event is generated and sent to the server. On the server side 
the event is forwarded to the compression module, which will 
adapt to the new required size by changing the compression 
parameters or even switch between compression algorithms. 
Fig. 7 shows a sample application using our proposed system.  

  
Fig. 7  Use case, left on a pda, right on a laptop. 

B. Experiment Results 

For the experiment we used a UMPC(Intel Celeron 900 
Mhz, 512MB RAM, Intel graphics for mobile) and PC (Intel  
Duo-core, 2 GB RAM, NVidia Geforce7) as client devices 
connected to a high-end rendering server. The time measured 
is the response time in a local LAN environment. We used 
high quality medical 3D data for rendering. When we use our 
proposed algorithm the response time becomes faster, as 
shown in Fig. 8.  



 

Fig. 8  The response for the UMPC and PC clients. 

VI. CONCLUDING REMARKS 

Interactive performance in terms of responsiveness is one 
of key challenging issues for interactive 3D applications. In 
this paper, we introduced run-time presentation adaption and 
dynamic interface adaptation mechanisms which aim to 
preserve the real-time interactive performance of 3D content, 
taking into account heterogeneous devices in user-centric 
pervasive computing environments. To support perceptual 
real-time interaction with 3D contents, temporal adjustment of 
presentation quality adaptation is used. It dynamically adjusts 
the quality of presentation on client devices according to the 
current device context. To overcome the inevitable physical 
heterogeneity in display capabilities and input controls on 
client devices, we provided a dynamic user interface 
reconfiguration mechanism for interaction with 3D contents. It 
can change the way how the interface is presented to the user 
(big screen or small screen bring several design issues with it) 
and adaptation to the user device input capabilities. In addition, 
functionality of 3D contents and rendering are dynamically 
bound with user interfaces at runtime according to profiles. 
We have built an initial prototype of our context-aware 
adaptive rendering system using Atlas framework for the 
handling the image/video stream and events, seamless session 
mobility mechanism in the network layer, and OSG as 
rendering engine. We also experimented with a specific 
scenario in user-centric pervasive environments. Experimental 
results show that the proposed system increased interactive 
performance of 3D contents. 
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