
A Context-Aware Adaptive Rendering System for
User-Centric Pervasive Computing Environments

N.A.Nijdam, S. Han, B. Kevelham, N. Magnenat-Thalmann

MIRALab, University of Geneva
7, rte de Drize, 1227 Carouge, Geneva, Switzerland

Abstract� In user-centric pervasive computing environments

where users can utilize nearby heterogeneous devices anytime
and anywhere, context-aware remote rendering is essential. It is
impractical not only to manually copy 3D content from one
device to another whenever a user moves, but also to render
complex 3D data locally on resource-limited devices, such as
mobile phones and PDAs. In this paper, we propose a context-
aware adaptive rendering system which visualizes 3D content
with customized user interfaces dynamically adapting to current
device contexts such as processing power, memory size, display
size, and network condition at runtime, while preserving the
interactive performance of the 3D content. To increase the
responsiveness of remote 3D rendering, we use a mechanism
which temporally adjusts the quality of visualization, adapting to
the current device context. By adapting the quality of
visualization in terms of image quality, the overall responsiveness
and frame-rate are maintained no matter the resource status. In
order to overcome inevitable physical limitations of display
capabilities and input controls on client devices, we provide a
user interface adaptation mechanism which dynamically binds
operations provided by the 3D application and user interfaces
with pre-described device and application profiles. We
prototyped our adaptive rendering system and experimented
with a specific scenario in user-centric pervasive environments.

I. INTRODUCTION

Recent advances in mobile devices and networks have
enabled a new wave of user-centric multimedia convergence
which puts the mobile users in the center of a rich and
interactive world with 3D content. They can utilize diverse
devices anywhere and anytime [5]. Considerable efforts have
been made for nomadic access of multimedia in mobile
computing [1]. This nomadic access however may limit users
in that it forces them to use their mobile devices as a single
point of multimedia access. It is also impractical to manually
transmit 3D contents from one device to another whenever a
user switches devices in order to make users to utilize diverse
device because not only does it distract users to copy 3D
content but also some resource-limited devices, such as
mobile phone and PDA, may not render complex 3D data
locally. To overcome resource limitations of mobile devices, a
data-centric approach [8], with which a client device used
semantically equivalent 3D data depending on different device
capabilities, has been used. However, this approach cannot
guarantee consistency of modified 3D content while a user is
switching across diverse devices. Adaptive remote rendering
approaches [4][11] have been proposed to seamlessly access

3D data with heterogeneous devices. They adaptively generate
size of images and frame rate based on the preconfigured
client rendering capabilities, display size and network
conditions on a dedicated server and stream to the client
devices. They, however, decrease interactive performance of
3D content not only because it takes long response time to get
feedbacks if 3D content is fully rendered remotely and
streamed back to a client but also because they do not support
to adapt dynamic context changes such as network bandwidth
at runtime. Hybrid rendering approaches [3][16] maximize the
utilization of resources on the server-side by delegating the
rendering of highly complex 3D scenes to a dedicated server.
They can support the client's interaction with 3D content even
in the case of temporal network failure. However, they don't
enable the users to exploit diverse devices adapting to the
current contexts at runtime. Clients therefore still need to
transfer large amounts of 3D data to the server on-demand.
They also do not consider client device capabilities, such as
display size and input controls, to represent the user interface.
It is impractical to provide complex full-featured controls on
resource-limited devices such as PDA and smart phone with
small display.

In this paper, we propose a context-aware adaptive
rendering system which visualizes 3D content and a user
interface, while dynamically adapting to the current context
such as device availability in the current location and their
capabilities, i.e., processing power, memory size, display size,
and network condition, while preserving interactive
performance of 3D contents. To increase responsiveness of
remote 3D visualization, we use a mechanism which adjusts
quality of visualization adapting to the current device contexts.
By adapting the quality of visualization in terms of image
quality, the overall responsiveness and frame-rate is
maintained no matter the resource status. To overcome
inevitable physical limitations of display and input controls on
client devices, we provide an interface adaptation mechanism
which dynamically binds operations provided by the 3D
application and user interfaces with pre-described device and
application profiles.

The remainder of this paper is organized as follows: In
section 2 we analyze the technical requirements of context-
aware adaptive rendering with a specific scenario. In Section 3
we analyze the pros and cons of related work in remote and
adaptive rendering systems. Section 4 describes our proposed
adaptive rendering system which meets the requirements

described in Section 2. Section 5 describes our
implementation and discusses the results from our
experiments. Conclusion and future work are discussed in
Section 6.

II. TECHNICAL REQUIREMENTS

While there are many possible scenarios, we present a
specific scenario in this section in order to make the problems
more concrete and to describe key challenging issues
regarding interactive 3D content visualization in user-centric
pervasive computing environments.

"Chloe, who is an undergraduate student, is attending a
course at the university. After the class, and while on her way
to the library, she starts to review the lesson by manipulating
3D course material on her PDA. After arriving at the library, a
high-end desktop PC is at her disposal to review 3D content
without reinitializing her 3D manipulation session. On her
way back home she continues to browse through the 3D
course material with her smart phone. Once she comes back
home, she completes the 3D manipulation on her PC." (Fig. 1).

 Fig. 1 Envisioned scenario.

Two key technical issues should be addressed to enable this
scenario. The first issue is a polymorphic presentation
adaptation to overcome resource heterogeneity of the client
devices while providing suitable responsiveness to users. This
means that the presentation of 3D content, i.e., frame size and
frame rate, has to be dynamically adapted to the current
device context such as processing power, memory size,
display size, and network condition at runtime. Presentation
on client devices can be adjusted with pre-configured device
profiles but the contexts of the devices vary over time and this
variance is nondeterministic, which results in clients being
under- or overloaded. Therefore, it requires a presentation
adaptation scheme that dynamically adapts the current
presentation context by continuously observing the underlying
device context such as available network bandwidth and
computational resources. The second issue comes from
inevitable physical heterogeneity in the capabilities of display
and input controls on the client devices. This requires dynamic
interface adjustment based on the current display instead of
providing complex full-featured controls on resource-limited
devices such as PDAs and smart phones with small display.
There are typically three types of adaptation. First, user inputs
with devices (mouse, keyboard, pen, etc.) should be
dynamically mapped to user interface controls. It implies that
user inputs are interpreted differently based on input devices.
Second, different user interfaces could be represented

depending on client capabilities. A limited set of functionality
can be displayed on the PDA compared with high-end devices.
Third, user interfaces (controls) can be dynamically mapped
to simulation and rendering functionality.

III. RELATED WORK

Several adaptive rendering mechanisms
[3][4][8][10][11][16] have been proposed to overcome
resource heterogeneity. Krebs et al. [8] proposed a data-
centric approach where users are using the same or
semantically equivalent 3D data with heterogeneous devices.
It is composed of three tiers. The presentation tier contains the
controller and view parts of the MVC paradigm [7]. The
domain tier contains application semantics as well as data.
The manifold tier glues the presentation and domain tier.
Device heterogeneity is handled by pre-described profiles in
XML/XSL. The XSL document maps elements in the XML
document to nodes in the result tree so that the renderer knows
how to render them. Parsing the common XML file and the
local XSL file generates the view at a particular user�s
machine. However, this approach is not able to guarantee the
consistency of modified 3D data. It furthermore takes a long
time to transfer the 3D data when a user moves across diverse
devices. Preda et al. [11] proposed a formal model of adaptive
rendering for multi-user 3D games. They defined a set of
transformations for adaptation to heterogeneous client devices,
rendering, coding, simplification, and modeling and possible
process chains for visual adaptation. However, they did not
provide any mechanism to dynamically adapt the current
context at runtime and to increase interactive performance for
users. To increase interactive performance of 3D simulation
and rendering, a hybrid rendering approach in which a
common subset of 3D models are rendered on both the client
and server sides, could be utilized. Engel et al. [3] proposed a
system which maximized utilization of resources on server-
side by delegating rendering of highly complex 3D scene to a
dedicated server. It, however, still limited users to exploit
diverse devices adapting to the current contexts because a
client needed to transfer large amount of 3D data to server on-
demand. Weaver et al. [16] proposed a perceptually adaptive
rendering system for immersive virtual reality which reduced
the computational burden by rendering detail only where it is
needed. Eccentricity from the user's point of gaze is used to
determine when to render detail in an immersive virtual
environment, and when it can be omitted in order to display
higher quality environments without reducing interactivity.

IV. CONTEXT-AWARE ADAPTIVE RENDERING SYSTEM

In order to support polymorphic visualization of 3D content
on heterogeneous devices, our adaptive rendering system
exploits the PSLA model [6], in which an interactive 3D
application can be typically divided into four parts;
presentation, semantics, link, and adapter. A presentation
supports the interface between a user and the shared semantics
as well as the visualization of 3D contents. The semantics are
organized into software modules which encapsulate the 3D
content. The presentation and semantics are dynamically

bound with adapter at initialization as well as runtime. Our
context-aware adaptive rendering system is composed of five
logical layers as shown in Fig 2. The network layer provides
not only the low level connection between the server and
client using TCP or UDP but also the transparent change of
subscription end-points for seamless subscription to 3D
content when a user switches one device to another. The
communication abstraction layer, which is composed of two
major components, being the communication manager and
event manager, abstracts low-level events to high-level
(application-level) events in order to mask low-level events
generated by heterogeneous devices. It also marshals/un-
marshals incoming events and redirects them to the
appropriate components. The adaptation layer on the client
side has two components, the context manager and resource
manager. The resource manager constantly monitors the
current state of the resources in terms of application
performance. Based on the information provided by the
resource manager, the context manager can determine the
optimal performance by taking adaptation decisions. The
decisions are translated into events and sent to the adaptation
manager on server-side so that it executes the appropriate
adaptation strategy. The presentation layer contains the render
engines. On the server-side, a 3D rendering engine renders 3D
content and generates images of different quality based on
current client resource capability. To transmit images to a
client, the frame-buffer is taken into the compression manager.
This generates a stream of compressed frames (similar to a
video stream) that is being decompressed on the client side
and displayed using a 2D rendering engine. The dynamic state
management on the server-side maintains the current state of
the 3D simulation in order to switch from devices without
losing the current simulation. In the application layer the
application logic is responsible for client side handling of
input and overall client side functionalities. On the server side
it is the �data storage� containing the 3D content that is
needed for the 3D rendering and simulation.

Fig. 2 Overall architecture of context-aware adaptive rendering system.

A. Run-time Presentation Adaption Control

We mainly focus on increasing responsiveness of 3D
content taking into account the current context of devices.
This means that whenever the user performs an action, the
response to this action should be shown to the user within a
certain amount of time. Fig. 3 shows the typical flow of the
remote rendering with interaction. The time taken between the
creation of an event and getting the results back to the user is
the time that we reduce with our adaptation manager. The
three main stages are: send the events, perform simulation
cycle and send the results.

Fig. 3 Round trip time, from input to visual response.

Assuming that the simulation is fast enough to deliver a
response within a certain amount of time, the main adaptation
takes place after the simulation step. Here a compression
algorithm is used in order to reduce the amount of data that
needs to be transferred. For a thin client this is the
compression of the image-data into an image/video stream.
For hybrid or full client rendering, the system compresses the
actual 3D data (e.g. lossless compression of vertices). In Fig 4,
we can see the several adaptation points given by diamond
shaped objects.

Fig. 4 Adaptation points, denoted by the diamond shaped objects.

The dynamic adaptation is aimed at the regulation of the
output data. We increase the perception of visual interaction
with a remote rendered 3D environment by introducing a
'temporal adjustment of presentation quality' adaptation
mechanism. By decreasing the quality, the decoding speed is
increased on the client side. Additionally for thin-clients the
frame-rate is increased. Whenever the user interacts with a 3D
object, the actions are displayed faster but at the expense of
image quality. The decrease of image quality is achieved by
switching to a stronger compression algorithm (if the
decoding side can keep up), by changing compression
parameters and/or if the client supports fast image scaling the
actual image resolution can be reduced and up-scaled on the
client side. We also use another approach,which detects
changes in the rendered frame and compares it with previous
rendered frames. If the amount of difference from the previous
frame is greater than a certain threshold the adaptation control
changes the compression strategy by reducing the quality
temporarily. The third approach is the encapsulation of

expected load for functions or performance indicators. This
can be done manually or at run-time. Manually by reading the
load factor for a function from a predefined configuration file.
This is the same configuration file that defines which events
are bound to specific functions. The run-time approach is a
profiler algorithm that, whenever a function is executed,
(based on an incoming event) measures the time that is needed
for full execution. The difficulty here is that a function itself
can be very fast, but the effects of the function (influencing
the simulation) can result in longer times. Either by
predefining the load factor or by adjusting the load factor
through the measurement of function execution another
feature can be introduced, namely load predection.

By anticipating the actions and their resulting timeframe for
user feedback the level of adaptation can be controlled to
achieve a constant time cycle. Another, more straight-forward,
approach to keep a constant time cycle is to keep a constant
data rate. This does not take into consideration the quality of
the network but only the amount of data being sent. It can be
achieved by fixing a specific frame rate and keeping a
threshold on the data size for each frame. If the size of a frame
after compression is higher than a certain threshold the
compression quality is lowered until the threshold is met again.
By default, we use this passive adaptation rule. However,
depending on the device profile a preferred frame-size is
given, which is the actual data size for a frame (after
compression) to be sent to the client. An extension to the
dynamic adaptation control is based on the network load and
should be balanced together with the frame rate. The whole
procedure is shown in Fig. 5.

Fig. 5 Adaptation manager: the adaptation control.

B. Dynamic Interface Adaptation

In order to overcome the physical heterogeneity limitations
in display capabilities and input controls on client devices, we
provide a dynamic user interface reconfiguration mechanism
for interaction with 3D content. It means to change the way
the interface is presented to the user (big screen or small
screen brings several design issues with it) and to adapt to
input capabilities of the client device.

Fig. 6 Dynamic mapping of user interface.

Fig. 6 shows the details of dynamic mapping. Each Element
is an event handler, and is listening to certain events to which
it can respond by creating new events. Each event received
from an input device is first handled by the Client Event
handler, this module determines if the event should be handled
by the client or the server. Then on the server or client side,
the raw event is sent to the corresponding Element that is
listening to the device. An Element can have a representation,
which can be a form of visualization in 2D or 3D, but also in
the form of audio or any other form of feedback. The handling
and control of the representation is performed by the logic that
is assigned to the specific Element. The representation of the
element is loosely coupled and therefore it may reside on the
server or client side. According to the Element logic, the raw
event can be translated into higher level events. These can be
a representation update, simulation, adaptation or any other
application specific event. This makes an Element a dynamic
building block that is used by the User Interface adaptation
manager to construct and modify the user interface whenever
needed. For example a combo box on a pc is displayed in 2D
using Windows, GTK or QT native widgets, but it can also be
displayed as a ring selection in 3D, using a different
representation but the same logic, and accepting the same
events, or accept different events but with the same logic.

Currently there are three forms of user-interface-interaction
implementations, two with a visual representation and one
with no �interface� visualization as follows:

Interaction with 2D interface: The default 2D interface
providing windows, buttons, text fields and other widgets with
its entire well established visual feedback mechanism. This is
an intermediate layer between input device and the 3D
simulation, providing the means to perform complex
operations and provide the necessary data for it. For example
a textbox and a button, might update simulation parameters,
which will be more dynamic than an �increase� and
�decrease� button, but at the expense of more user interactions
(typing and confirmation with a mouse-click or keyboard
command, instead of a single click).

Interaction with 3D interface: This form of interaction is
integrated into the 3D environment and therefore provides the
user with direct interaction with 3D objects This is usually
achieved by means of a 3D pointer, which is able to hover
over 3D objects and whenever the user executes a command
to select or perform some other action it is directly executed
on the specific object. Aside from the input device, this

interaction mechanism boils down to �see the 3D object�,
�select the object�, �execute operation on object� and �wait for
visual feedback�. The visual feedback should be direct if the
simulation behind is a real-time simulation. In essence this
approach is similar to the 2D interaction mechanism, but by
adding one dimension more it provides us with new abilities
as to how we perceive the interaction and handling of virtual
objects. The implementation of a 3D interface feedback may
have similar features as its 2D version; for example selected
objects should be highlighted, or just by hovering over objects
information on them should be displayed. This feedback is
different from the 3D simulation itself, as it doesn�t intervene
with the simulation, but just provides visual 3D feedback.

Interaction with Implicit Inputs: It has input device
bindings directly to an event that changes simulation
parameters without showing it in the sense of an interface. For
example 3D movement, the camera is being moved around in
the 3D world. The visual feedback is that the user gets the
impression of moving in a virtual world, but there is no direct
feedback from any object in the world. It is exactly the same
as the 3D interaction, but without a direct 3D �interface�
implementation. All of these interaction mechanisms can be
used with any kind of human interface device (HID), such as a
pointing device (mouse) or keyboard etc. Each input device
can be coupled differently according to its input capabilities,
the application capabilities and user preferences. The binding
between the application and device can be hardcoded and to
some degree the user can set its own preferences. However in
order to switch from one device to another, the interface
mapping needs to adapt accordingly. Another form of
adaptation is dynamic coupling in which coupling changes
depending on the current context. For example if the
connection between device and server is very bad, than 3D
rotation can be limited from smooth rotation to fixed rotation
(for example front, side, top view).

V. IMPLEMENTATION AND EXPERIMENT RESULT

A. Implementation

We used a seamless user mobility support mechanism [12]
in the network layer and a customized version of the Atlas
framework [9], which is a scalable network framework for
distributed virtual environments, for the communication
abstraction layer in order to handle the image/video stream
and events. Inputs from a client device are, depending on the
application, translated into local events or server events. For
example, a simple rotation of a 3D object, which is done by
clicking and dragging the mouse, is executed locally or
remotely depending on the device used. If the device has
render capabilities and is able to render the 3D object locally,
then the rotation can be performed locally, otherwise the event
is sent to the server and rotation takes place in the remotely
rendered 3D environment. If the action is performed locally
then the results of the action still need to be synchronized with
the server, however this can be achieved by synchronizing
based on end result, instead of micro updates for each device
event (like mouse click, move etc).

The 3D rendering engine is based on Open Scene Graph
(OSG) renderer [18], It is based on a scene graph approach
which makes it possible to dynamically change the rendering
procedure based on the client device capabilities. This can
range from partial rendering (part on server and part on client),
representation (different shading style, e.g. realistic, cell
shaded etc) and specific adaptation algorithm that are tightly
coupled with the rendering (off-screen rendering, layered
rendering, color channel manipulations). On the client side, a
similar engine is used, if the client device is capable of
rendering 3D data. However it also provides other means to
render the image/video, where it simply is "blitting" the
incoming image data onto the screen. The image can contain
meta-information about its size and location on the screen, in
order to only update a smaller region on the screen. This
mechanism makes it possible for low end devices to view
complex data that otherwise could not be rendered. Currently
the blitting operation is implemented in three ways, using a
�software� algorithm (SDL) [20] using OpenGL with the
glDrawPixel command and OSG by rendering to a texture,
which is used on a full screen quad. The Resource manager
and context manager are handling the adaptation. The
resource manager is registering the network bandwidth and,
based on speed and packet throughput, determines the time
needed to render the incoming data and the time needed for
decompressing the image data. The context manager uses this
information and generates, according to a set off heuristic
rules, adaptation events. An event contains information about
a function or action that has to be executed. An example of the
heuristic rules is the following: based on network throughput
the optimal size for a compressed image is calculated, then an
event is generated and sent to the server. On the server side
the event is forwarded to the compression module, which will
adapt to the new required size by changing the compression
parameters or even switch between compression algorithms.
Fig. 7 shows a sample application using our proposed system.

Fig. 7 Use case, left on a pda, right on a laptop.

B. Experiment Results

For the experiment we used a UMPC(Intel Celeron 900
Mhz, 512MB RAM, Intel graphics for mobile) and PC (Intel
Duo-core, 2 GB RAM, NVidia Geforce7) as client devices
connected to a high-end rendering server. The time measured
is the response time in a local LAN environment. We used
high quality medical 3D data for rendering. When we use our
proposed algorithm the response time becomes faster, as
shown in Fig. 8.

Fig. 8 The response for the UMPC and PC clients.

VI. CONCLUDING REMARKS

Interactive performance in terms of responsiveness is one
of key challenging issues for interactive 3D applications. In
this paper, we introduced run-time presentation adaption and
dynamic interface adaptation mechanisms which aim to
preserve the real-time interactive performance of 3D content,
taking into account heterogeneous devices in user-centric
pervasive computing environments. To support perceptual
real-time interaction with 3D contents, temporal adjustment of
presentation quality adaptation is used. It dynamically adjusts
the quality of presentation on client devices according to the
current device context. To overcome the inevitable physical
heterogeneity in display capabilities and input controls on
client devices, we provided a dynamic user interface
reconfiguration mechanism for interaction with 3D contents. It
can change the way how the interface is presented to the user
(big screen or small screen bring several design issues with it)
and adaptation to the user device input capabilities. In addition,
functionality of 3D contents and rendering are dynamically
bound with user interfaces at runtime according to profiles.
We have built an initial prototype of our context-aware
adaptive rendering system using Atlas framework for the
handling the image/video stream and events, seamless session
mobility mechanism in the network layer, and OSG as
rendering engine. We also experimented with a specific
scenario in user-centric pervasive environments. Experimental
results show that the proposed system increased interactive
performance of 3D contents.

ACKNOWLEDGEMENTS

The work presented was supported by the EU project
INTERMEDIA (38419), in the framework of the EU IST FP6
Programme.

REFERENCES
[1] Anastasi, G., Conti, M., Gregori, E., Pelusi, L., and Passarella, A., An

Energy-efficient Protocol for Multimedia Streaming in a Mobile
Environment, International Journal of Pervasive Computing and
Communications, Vol.1, issue 4, pp. 301 - 312, 2005.

[2] Chang, S., Anastassiou, D., Eleftheriadis, A., and Pavlik, J., Video on
Demand Systems: Technology, Interoperability and Trials, Kluwer
Academic Publisher, 1997.

[3] Engel, K., Hastreiter, P., Tomandl, B., Eberhardt, K., and Ertl, T.,
Combining local and remote visualization techniques for interactive
volume rendering in medical applications, proceedings of Visualization
2000, pp. 449 � 452, 2000.

[4] Eisert, P. and Fechteler, P., Low delay streaming of computer graphics,
proceedings of the 15th IEEE International Conference on Image
Processing, pp. 2704-2707, 2008.

[5] Frohlich, P., Simon, R., and Baillie, L., Mobile Spatial Interaction,
Personal and Ubiquitous Computing, vol.13, issue 4, pp. 251 � 253,
2009.

[6] Han, S., Lee, D., Ko, I., A Deputy Object based Presentation Semantics
Split Application Model for Synchronous Collaboration in Ubiquitous
computing Environments, Proceedings of the third International
Conference on Collaboration Technologies (CollabTech 2007), July
2007.

[7] Krasner, G. and Pope, S., A Description of the Model-View-Controller
User Interface Paradigm in the Smalltalk-80 System, Journal of Object-
Oriented Programming, vol. 1, Issue 3, pp. 26 � 49, 1988.

[8] Krebs, A.M., Marsic, I., and Dorohonceanu, B., Mobile adaptive
applications for ubiquitous collaboration in heterogeneous
environments, proceedings of 22nd International Conference on
Distributed Computing Systems, pp. 401- 407, 2002.

[9] Lee, D., Lim, M., Han, S., and Lee, K., ATLAS: A Scalable Network
Framework for Distributed Virtual Environments, Presence:
Teleoperators and Virtual Environments, Vol. 16, Issue 2, pp. 125-156,
2007.

[10] Lee, S., Ko, S., Fox, G., Adapting Content for Mobile Devices in
Heterogeneous Collaboration Environments, Proceedings of the 2003
International Conference on Wireless Networks, June 2003.

[11] Preda, M., Villegas, P., Moran F., Lafruit, G., and Berretty R., A model
for adapting 3D graphics based on scalable coding, real-time
simplification and remote rendering, the Visual Computer Journal, vol.
24, pp. 881-888, Springer, 2008.

[12] Repetto, M., Mangialardi, S., Rapuzzi R., and Bolla, R., Streaming
multimedia contents to nomadic users in ubiquitous computing
environments, Workshop on Mobile Video Delivery in conjunction
with InfoCom 2009, Rio de Janeiro, Brazil, 2009.

[13] Singhal, S., and Zyda, M., Networked virtual environments: design and
implementation, ACM Press/Addison-Wesley, ISBN:0-201-32557-8,
1999.

[14] Verhoeven, R. and Dees, W., Defining services for mobile terminals
using remote user interfaces, IEEE Transactions on Consumer
Electronics, vol. 50, Issue 2, pp. 535 � 542, May 2004.

[15] Vlissides, J. and Linton, M., Unidraw: a framework for building
domain-specific graphical editors, ACM Transactions on Information
Systems, vol. 8, Issue 3, pp. 237 � 268, 1990.

[16] Weaver, K. and Parkhurt, D., Perceptually adaptive rendering of
immersive virtual environments, Lecture Notes in Computer Science,
vol. 4569, pp. 224 � 229, 2007.

[17] Reade, C., Elements of Functional Programming, Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., (1989), ISBN
0201129159.

[18] OpenSceneGraph, http://www.openscenegraph.org/
[19] RTSP, http://www.ietf.org/rfc/rfc2326.txt,
[20] Simple DirectMedia Layer , http://www.libsdl.org/

