
Virtual Try On: An application in need of GPU optimization
Bart Kevelham

MIRALab – University of Geneva
7 Route de Drize

1227 Carouge, Geneva, Switzerland
+41 22 3790118

kevelham@miralab.ch

Nadia Magnenat-Thalmann
MIRALab – University of Geneva

7 Route de Drize
1227 Carouge, Geneva, Switzerland

+41 22 3790969

thalmann@miralab.ch

ABSTRACT
In this paper we discuss our Virtual Try On (VTO) from the
perspective of performance. The VTO is an application which
assists users in the evaluation of physically simulated garments on
a size-correct virtual representation of their own body. Where in
previous work we discussed its features and implementation, here
we analyze its performance and identify those components which
would benefit most from additional optimization efforts. We then
detail our ongoing efforts and achieved results with regards to the
optimization of the application, by making use of GPU
computation, focused on the accurate physical simulation of
garments.

Categories and Subject Descriptors
I.3.8 [Computer Graphics]: Applications

General Terms
Performance.

Keywords
virtual try on, cloth simulation, gpu optimization

1. INTRODUCTION
The Virtual Try On is an application that allows customers to
evaluate garments through physical simulation of these garments
on an animated virtual avatar sized to their measurements. Besides
allowing for the evaluation of style, an ideal VTO should also
address the issue of "fit". That is, how a certain garment fits on the
customer's body, either in a static pose or in a dynamic scenario
such as a walk. To this effect, our VTO integrates three main
modules:

• A body sizing module which generates size-accurate
avatars based on a generic template [1].

• A motion retargeting module which adapts the
prerecorded animation to the model [17].

• A garment simulation module which simulates the
dynamic behavior of the 3D garments [33].

Through this integration – which also includes various other
functionalities - and by means of a clean API, the VTO has been
used in a wide variety of application scenarios. Examples range
from web-based applications [18] and public demonstrators [19],
to remote AR scenarios [16] and web services.

Though in terms of functionality this VTO has all the features we
consider essential, through its various applications we have found
that its performance is not optimal. In this paper we will therefore
address the issue of VTO performance and our ongoing progress
in its optimization using GPU computation.

The paper is organized as follows: We will first take a look at the
Virtual Try On and its functionalities in section 2. We will present
an analysis of its performance and identify those bottlenecks
whose performance improvement would benefit us most. In
section 3 we will present previous work related to the GPU
optimization of physical simulation, focusing on numerical
methods and the related linear algebra operators, as well as
mechanics. Subsequently in section 4 we will present our ongoing
efforts towards the GPU optimization of our physical garment
simulations using the CUDA API [22] as well as the achieved
performance results. Conclusions and future work will be detailed
in section 5.

2. THE VIRTUAL TRY ON
Where a Virtual Try On system certainly is of value when
evaluating garments from the perspective of style, it would be of
benefit to also address the issue of "fit". That is, how a certain
garment fits on the customer's body, either in a static pose or in a
dynamic scenario such as a walk.

The issue of style is relatively easily addressed by allowing the
user to “dress” a virtual model with various garment meshes,
which can be customized along the options provided by the
designers in their collections. One can consider such possibilities
as various fabrics, colors and perhaps accessories.

The issue with introducing fit into a Virtual Try On is the
additional requirements this imposes. Evaluating fit will only ever
work when we base our application on a 3 dimensional avatar
which has virtual body measurements exactly matching those of
the customer. We have chosen to provide this by means of a
resizable template body model [11]. When including animation
however, care needs to be taken of the discrepancies that arise
between the usually prerecorded body animation and the new
morphology of the virtual model. With this issue in mind, we have
included a motion retargeting module which maintains the
coherence between morphology and animation [17].

One of the bigger issues to address however is that of the
garments itself. To evaluate fit, it is no longer enough to make use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

of static meshes. The fit of a garment addresses the interplay
between a garment and the body. To virtually evaluate this, we
use a system for the physical simulation of garments [33] whose
input consists of virtual garments constructed from accurate 2
dimensional pattern data, as their real counterparts would be.

With regards to the physical simulation itself there are two
competing issues. We ideally would like the system to perform in
real-time. But on the other hand, to properly evaluate garment fit,
we want our simulation to be accurate. Visually compelling
garment simulation in real-time is achievable. Physically accurate
simulation is a far more difficult proposition.

2.1 Application Performance
In our extensive use of the VTO under various circumstances we
noticed that, despite our best efforts, the performance of the VTO
is not what we would like it to be. The question then becomes: “In
what way does the VTO underperform and what causes this?“

When regarding VTO performance, there are two areas which take
a significant amount of computational effort which might be at the
root of our perceived problems. One is the body, including its
animation, resizing and animation retargeting. The other is the
real-time garment simulation.

With regards to the body and its interactions, we have performed a
series of timing runs of the body, in full animation while
simultaneously performing sizing operations. The body at this
point is not wearing any garments, so there is no influence of the
garment simulation. Figure 1 shows a fairly typical graph of
application performance of one such instance of measurement
over a period of 20 seconds.

Figure 1. VTO performance of a model undergoing sizing
interactions

There are two things to note. First of all, overall performance of
just the animated template body lies at a reasonable average of
102 frames per second. As illustrated in Figure 2, sizing the body
with respect to a girth measurement triggers the body sizing
module to deform the mesh. Sizing any lengths affecting the
underlying skeleton triggers both the body sizing module and
motion retargeting module. The various dips in the graph are such
sizing occurrences with the lower dips caused by a sizing
affecting the skeleton. On average such a worst-case manipulation
takes around 0.2 seconds to complete for a template body with an
animation of 350 key-frames (for a total animation of 14 seconds).

Figure 2. A typical sequence of steps performed by the VTO
from one frame to the next

What is more interesting to note however, is not the exact time it
takes to perform the operation. While significant in an isolated
instance, in the overall scheme of things such interactions are
exactly that: isolated instances. At a maximum they occur just
once every several seconds. And when performed in a typical
static sizing scenario (where the model is not yet animated) such a
temporary drop in performance is not disturbing if it is noticeable
at all.

Figure 3. A cocktail dress, frilled dress, a pair of pants, a pair
of shorts, a flared top and a top with sleeves as used in the

VTO performance evaluations

To evaluate VTO garment simulation performance we’ve taken a
particular set of garments as practically used in our VTO
demonstrations (see Figure 3). This set of garments has been used
in our VTO demonstrator as described in [19].

To aid in the performance of the simulation, the garments use two
mesh resolutions. An invisible lower resolution garment mesh is
used for the actual simulations, which in turn controls a higher
resolution visual mesh which is rendered. Furthermore, the VTO
allows for two simulation modes. In real-time a quasi-static
simulation mode is used with the aim to improve performance
while maintaining simulation accuracy. A fully dynamic
simulation mode is used in conjunction with an integrated video
recording module. This allows the user to preview a real-time
result, while also being able to save a movie with high-quality
simulation in a matter of mere minutes. Table 1 lists the number
of elements per (combination of) garment(s) as well as the
averagely achieved frame-rate and the time needed to go through a

full high-quality non-real-time simulation cycle for an animation
of 18 seconds in length.

The hardware used in these evaluations is a desktop PC with an
Intel Core i7 X980 CPU at 3.33GHZ, 12GB of RAM and an
NVIDIA GeForce GTX 480 GPU.

Table 1. VTO performance per garment (combination)

Garment Elements Frames/s
HQ

Duration
Cocktail Dress 2425 13.8 492s

Flare Top 2906 18.1 646s

Shorts 2986 17.23 151s

Pants 3970 16.69 175s

Shorts + Flare Top 5892 12.77 1045s

Sleeves Top 6274 13.8 906s

Pants + Flare Top 6876 12.3 1181s

Dress Frills 7092 10.47 401s

Shorts + Sleeves Top 9260 10.43 1273s

Pants + Sleeves Top 10244 9.9 1396s

The simulation timings themselves are influenced by a variety of
factors. The density of the simulated garment meshes (that is, the
number of elements it has) is one factor. While all garments
evaluate both tensile and bending stiffness, their (material)
behavior expressed in possibly non-linear strain-stress curves
might differ, affecting simulation performance. Materials with a
significantly higher stiffness than others will typically take longer
to simulation for example.

All these various influences notwithstanding, what can easily be
gathered from the listed performance figures is that each and
every one of them can at most be called “interactive”. While we
have put them to good use, none of them are as real-time as we
would like to see. Ideally we would like to achieve the results we
currently obtain in our non-real-time, fully dynamic, high-quality
simulation mode, but in real-time. The performance figures in
Table 1 for the high-quality simulation do however clearly
indicate that the current VTO is far removed from achieving that
feat.

In summary we can state that the component within the VTO
which would most benefit most from improved performance is the
garment simulation module. As such, the remainder of this article
will discuss how to achieve such improved performance and will
particularly focus on the GPU as a computation platform to realize
this goal.

3. RELATED WORK
Optimization of garment simulation performance can be
approached from two directions. Either you simplify the
simulation problem itself. That is, you select a simplified and
computationally less intensive mechanical model, such as straight-
forward mass-spring model rather than the current (finite)

element-based solution. Or you reduce computational load by
simplifying the simulated meshes to ones with a lower element
density. The problem here is that both solutions will come at the
cost of reduced accuracy, which is something we would like to
avoid. The second direction would be to simply apply more
computational power to the problem.

The VTO in its evaluated implementation is a single-threaded
application. And where increased processing power is no longer
found in single cores, parallel execution utilizing multi-core
hardware or even GPUs seems to be a more viable option.

The parallelization of cloth and garment simulations has seen
various platform specific contributions on (what was then) state-
of-the-art hardware. Looking at CPU based solutions we see
successful parallelization attempts using specialized server
hardware [14][27], networked PCs [12][34] and multi-core
processors[10][28][32]. While we are predominantly interested in
GPU based solutions, what we can take away from these
contributions is the following: Both the mechanical and numerical
components of physical simulations benefit from a data parallel
approach and are of a streaming nature.

Especially the latter point is of importance since, as stated by
[23], “the graphics pipeline is a good match for the stream
model…”. And with the introduction of programmability in the
graphics pipeline, graphics processors started to be used – besides
their usual rendering tasks – as general purpose stream processors,
a concept often referred to as GPGPU (General-Purpose
computing on Graphics Processing Units).

3.1 Numerical Algorithms and Linear
Algebra operators
When considering the physical simulation of garments, an implicit
integrator such as described by Baraff and Witkin [1] is a
requirement to ensure simulation stability without having to resort
to unfeasibly small time steps. The introduced implicit Euler
integration computationally requires the multiplication of a very
sparse matrix with a dense vector as part of the employed
Conjugate Gradient method. While dense matrix-vector
operations are fairly trivially parallelized in a GPU context, sparse
matrix operations require more care.

In a shader based setting, both Krüger and Westermann [13] and
Bolz et al. [4] map linear algebra operations to a GPU context.
Sparse random matrices - as often found in simulations involving
unstructured meshes - require that only non-zero elements are
stored and used in computation. Both aforementioned papers take
a slightly different approach. Non-zero elements in each column
are stored as vertex data in [13], with the position ensuring the
element gets rendered in the same location as if it were stored as a
2D texture, while the color holds the value of the element. In [4]
however, the sparse matrix is split into two textures to hold non-
zero elements. One texture holds all entries on the matrix
diagonal. A second texture holds all off-diagonal elements of each
row, compacted into a single texture. Two additional textures are
then needed to hold offsets for the start of each row's data, as well
as its column location. In both cases performance improvements
of up to an order in magnitude are reported.

For the CUDA platform, Bell and Garland [3] provide various
sparse-matrix vector operation implementations, based on
standard storage formats among which the CSR format relevant to
our random sparse data. Each row of sparse matrix data is handled

by a single warp of 32 threads. The result of these efforts can be
found in the CUDA based CUSP [6] library for sparse linear
algebra and graph computations. Baskaran and Bordawekar [2]
implement a fairly similar CSR based approach, though they use a
half-warp per row with added alignment adjustment to ensure
coalescing. They report similar or improved performance over
CUSP, at the cost of increased memory requirements

3.2 GPU optimized mechanics
Early work in GPU optimized mechanics predominantly focuses
on the simulation of 3D (tetrahedralized) objects. The simulation
of 3-dimensional deformable bodies at an interactive rate is
presented by Georgii et al. in [8]. They employ a linear mass
spring model with a Verlet integrator, implemented in fragment
shaders. As an extension the authors explore the benefits of an
edge centric or point centric approach to the calculation of forces
[9]. The point-centric approach (PCA) immediately calculates the
forces for each node by looking at connected neighbor nodes. The
PCA approach has the downside that spring forces are computed
twice. This double computation is avoided with an edge-centric
approach (ECA). Using an ECA forces are calculated for each
edge/spring and the contributions are added to the connected
nodes. This requires a two step approach in which forces are
computed per edge and stored in a first pass, while the final nodal
forces are then computed by summing the associated edge forces
in a second pass. The authors note that the ECA is generally the
faster performer and increasingly so for irregular meshes.

In close relation to this work stands the work of Mosegaard et al.
[20][21] where a volumetric spring-mass simulator, using Verlet
integration, is used in a surgical simulator. The deformable object
is a volumetric model based on voxel data from a CT dataset. Two
different addressing approaches are taken with regards to spring
connections: An explicit approach where each particle maintains a
list of particle indices to which it is connected and an implicit
approach which makes smart use of the 3D voxel grid by
implicitly connecting a node for each voxel with its 18 direct
neighbors. Explicit addressing has the downside that an additional
lookup is needed to find the neighboring particle positions, which
can be a limiting factor in the simulation's performance. Implicit
addressing allows for the use of a simple offset to find the
connected particle's information. While in their shader based
implementation the implicit solution has twice the performance of
the explicit solution, this result changes in their later CUDA based
implementation [25]. This is mostly due to the inactive particles
with in a grid. While these particles could be easily masked out
with the shader based approach using a hardware accelerated
mask, this is no longer the case when using CUDA. This change
in performance behavior does however come with the benefit of a
simpler implementation and the support of arbitrary geometry
when using explicit addressing.

Tejada and Ertl [31] address the inherent instability of explicit
integration with an implicit Euler integrator along the lines of [1]
to be able to simulate stiff materials at larger time steps and higher
stability. The solver's matrix operations are implemented along the
lines of [13], exploiting new hardware capabilities to reduce the
number of passes needed for reduction and multiplication
operations.

In the context of garment simulation, the work of Rodriguez-
Navarro and Susin [26] is the first to consider a co-rotational
Finite Element Method approach to simulation on the GPU.

Based on the work by Etzmuss et al. [7] they implement a garment
simulator for virtual avatars, using implicit integration and GPU
based collision detection. Their reported speedup over an
equivalent CPU implementation lies in an order of a magnitude.

In the work of Comas et al. [5], the CUDA API is used to
implement soft tissue simulation based on the TLED algorithm for
nonlinear dynamic finite elements. The work is implemented as
part of the open source SOFA medical simulation framework.
TLED had had previously been implemented using a shader based
approach [29][30]. The authors describe a two stage solution to
avoid the inherent difficulties of creating a fully functional
scattered write solution. First element stresses are converted to
nodal force contributions. In a second stage for each node the
contributions by the various elements it's attached to are gathered
to obtain the final nodal forces. Given the use of unstructured
meshes, memory access is fairly random. Texture memory is used
for global memory access, which - due to a texture's cache -
should reduce the performance hit usually associated to
uncoalesced reads. The authors use page-locked host memory to
transfer data between CPU and GPU.

Li et al. [15] present a hybrid CPU-GPU approach to the
simulation of clothing. Using a mass-spring approach to the
simulation of clothing, they employ a spatial subdivision approach
to collision detection. All states are handled on the GPU via the
CUDA API. The authors find however that the handling of
deformation constraints as presented by [24] is more time-
consuming when performed on the GPU than when this is done
on the CPU. They therefore handle this stage on the CPU, once
the GPU force computation has finished. To hide some of the
costs associated with CPU/GPU data transfer, the ability to
asynchronously launch kernels is used. In their evaluation they
note a performance improvement in the order of a magnitude of
their hybrid approach, over a CPU only solution. A GPU only
solution falls somewhere in between.

4. GPU OPTIMIZATION
In this section we discuss our GPU optimized framework for the
physical simulation of cloth and garments. The main goal of this
framework, as should have become apparent, is to achieve
improved performance with respect to our VTO platform. As such
we desire ideally real-time performance in a fully dynamic
simulator, which is able to accurately simulate the nonlinear
behavior of fabrics. We will focus on the simulation itself, but of
course there are additional requirements to our framework such as
the seamless integration with our existing data and content
pipeline, as well as ease of use for application developers through
a clean API.

4.1 The framework
Our simulation framework, written in C++, consists of a templated
set of objects which allow for instantiations based on floating
point precision (single or double) and backend (either CPU or
GPU). The GPU implementation which we’ll discuss here is
based on the CUDA API. With regards to the mechanical and
numerical components of our framework, an abstract and
simplified overview of their organization is given in Figure 4.
This overview ignores all other components such as those related
to I/O, rendering and other functionalities.

The GarmentObject is the main object within our framework and
is what controls the full simulation cycle. It holds the garment’s

mechanical state (positions, velocities, masses, etc.), one or more
Elements, a Solver and possibly an external ForceField (for such
effects as wind and drag.) It is this GarmentObject which is used
by the application developer and which hides all the necessary
functionality behind an easy to use API. The main computational
components are listed on the right side of the diagram and
effectively hold the CUDA kernels launched for the computation
of forces, force Jacobians (Elements) and numerical integration
(Solvers).

Figure 4. A structural overview of our GPU simulation
framework

4.1.1 The Solvers
The responsibility of a solver is to update a system’s state from its
current frame/time to the next. As such, once invoked, it will
request a GarmentObject’s Elements to compute the forces and
possibly force Jacobians based on a specific state. Our framework
supports two solvers; an explicit Runge-Kutta-Fehlberg solver, as
well as an implicit Euler solver. In practice, the implicit solver is
our solver of choice. The explicit solver is mainly reserved for
those cases where we need the associated high accuracy or when
we want to establish a ground truth.

The explicit solver has a fairly straight-forward structure. Its
computation consists of dense vector operations and allows for a
trivial implementation.

For the implicit solver we take a somewhat different approach
than the methods described in section 3.1. For one, we don’t
explicitly compute and store a sparse matrix. Instead we compute
the sparse-matrix/vector product on the fly by deferring the
responsibility to each individual element, be it a triangular
element or a spring. Taking note of the fact that each element’s
contribution to the overall Jacobian matrix can be formulated as
the outer product (a bT) of two vectors, its multiplication with an
arbitrary input vector (a bT)v can be rewritten to a(bT v). This is a
dot-product and a scalar product, rather than a more complex
matrix/vector product.

Due to this structure, the computation of the sparse-matrix/vector
product uses two CUDA kernels. The first kernel computes the
product of an element’s Jacobian contributions with the relevant
parts of the vector, while a second kernel sums all the individual
contributions into the final dense result vector.

As such, we avoid the need for the setup or update of a sparse
matrix data structure. What is more, this computational structure
in the end closely resembles the computational structure for
element forces as we will come to discuss, making computational
organization fairly straight-forward.

4.1.2 The Elements
To evaluate the tensile and bending behavior – and the associated
forces – of the garments we simulate, we integrated three different
element types. Each element maintains its own specific topology
information and other (possibly pre-computed) per element
values.

In line with [CTO08] we have found that an element centric
approach using two kernels for force computation is relatively
straight-forward to implement and allows for good performance.
As was discussed for our implicit solver, the computation of
forces takes two steps. A first kernel computes the forces for the
nodes in each triangular element or for the individual spring. A
second kernel then combines all the forces for each node by
summing the contributions of each attached element. This second
kernel relies on a lookup table which for each node stores which
elements it attaches to. This same lookup table is also used by our
earlier discussed implementation of the implicit solver.

Memory access with regards to the second kernel, but also with
regards to the state values accessed in the first kernel is largely
unstructured. In an attempt to alleviate most of the performance
penalty involved in unstructured memory reads using CUDA, we
bind all the arrays accessed in an unstructured manner to a
texture. Through texture fetching and the associated caching
available, we find that we still obtain good performance.

Figure 5. Our framework evaluates tensile stiffness based on a
triangular element (left) and bending stiffness based on a

“basic shell triangle” (right).

The tensile element is based on the mass-lumped particle system
as described in [33]. The triangular element (Figure 5, left), has a
fairly straight-forward expression of the element forces and force
Jacobian. As such it is straight-forward to implement, while it still
allows us to simulate the highly nonlinear behavior of fabrics.

Bending stiffness within fabrics is often low – especially
compared to tensile stiffness – but its accurate evaluation is
necessary for realistic simulation results related to folds and
wrinkles. To evaluate bending stiffness we support two element
types; a so-called “basic shell triangle” (Figure 5, right) as well as
a straight-forward spring. In the former case bending stiffness is
evaluated through the positioning of the 3 outer nodes with
respect to the inner triangle, while in the latter case two nodes are
connected by a spring across the shared edge of two triangles. In
practice we usually resort to the basic shell triangle element for
our bending behavior.

To model material behavior we support non-linear strain-stress
curves. These curves are implemented as piecewise cubic
polynomial splines whose constants are easily stored within float4

elements. While splines of a higher degree would be possible, we
find in practice this is not necessary. The evaluation of both the
stress and stress-derivative has a simple structure and is
implemented as a straight-forward device function. Our platform
allows for both a global material behavior as well as different
materials per triangular or spring element to allow varying
material behavior across a fabric.

4.2 Results and performance
To evaluate the performance of our framework, we have taken a
1m2 square piece of fabric which is horizontally clamped at its top
edge. The fabric consists of between 200 and 20k triangles. We
used an implicit Euler solver fixed at 16 Conjugate Gradient
iterations with a fixed time step of 0.01 seconds.

We tested two scenarios as illustrated in Figure 6; A fabric with
only tensile stiffness and a fabric with both tensile and a high
bending stiffness.

Figure 6. Simulation of a 5000 element 1m2 fabric. Tensile only
(left) and tensile + bending (right).

Performance was evaluated on a NVIDIA GeForce GTX 480,
which is a GPU based on the Fermi architecture. All timings
reported are the exact simulation times. Data transfer between
CPU and GPU is not taken into account.

All performance tests simulated cloths of varying element
densities through a simulation cycle of several simulated seconds.
Timing results were then averaged for 100 timesteps, or 1 full
simulated second.

Figure 7. Tensile: average time taken in ms for 100 timesteps

4.2.1 Tensile Element
When considering the scenario with only tensile stiffness as
various fabric resolutions, we get a performance graph as
illustrated in Figure 7. Even at 20k elements, we achieve a
performance of about 55 time steps per second.

Comparing this to the performance results mentioned in [33] is
somewhat difficult since no exact hardware details are listed.
However, where they report the ability to iterate over 17.5k
elements per second, a conservative estimate of at least an order
of magnitude improvement seems reasonable.

If we evaluate the computation time spent per triangular element,
we get a performance graph as illustrated in Figure 8. What this
graph illustrates is that the performance starts to achieve its peak
from around 5000 elements and higher. Though the exact shape of
this graph depends on the hardware used, its global shape is
explained by the fact that only at a significant amount of elements
a reasonable level of occupancy is achieved and some of the
latencies associated with memory access are hidden.

Figure 8. Simulation time per triangular element per 100
iterations in ms

Overall the simulation performance seems to keep up fairly well
with increasing mesh densities. Pushing our simulation to the
limit, we see that in the scenario mentioned we still achieve 2 time
steps per second for a 1million element cloth. Although the 16 CG
iterations are then by no means enough for proper simulation.

4.2.2 Tensile and Bending Element
When adding bending elements into the mix, the situation
becomes slightly different. Of course the computational
complexity increases which has an effect on performance. As
shown in Figure 9, the performance at 20k elements is still 37
time steps per second. Performance behavior sometimes becomes
slightly irregular. With varying amounts of elements we see
certain repeatable performance sweet spots such as the sudden dip
at 7.2k elements.

Given the particular bending element as shown in Figure 5 (right)
there is relatively more irregular memory access to computation
than with the tensile elements alone. There are for example twice
as many nodal values to retrieve per element. With the
computation itself remaining fairly simple, it becomes more
difficult to find a good balance between memory accesses and
computation.

Figure 9. Tensile + Bending: average time taken for 100
timesteps

Overall though the per-element performance (Figure 10) follows a
similar pattern as in the tensile-only case. Optimal performance
starts to be achieved slightly later, from 7.2k elements and higher.

Figure 10. Simulation time per tensile+bending element per
100 iterations in ms

While material nonlinearities are evaluated through our piecewise
polynomial splines, we do find that in their current
implementation performance is not ideal due to possible branch
divergence between threads.

5. CONCLUSION
With our framework in place, we have found that we can achieve
a considerable speedup compared to our CPU based simulations.
As such, the GPU optimization of our garment simulations seems
to be a valuable avenue to pursue. Real-time performance is
promising.

Because the performance scales well with increasing mesh
density, we also find that the framework might be valuable in non-
real-time scenarios with high garment mesh densities.

Future work will focus on the deeper evaluation of achieved
performance and comparison to other platforms, as well as the
improvement of our framework with respect to some of the noted
performance bottlenecks.

Further avenues for investigation are the integration of collision
detection and handling, either based on a full GPU solution or by
means of a hybrid CPU-GPU alternative.

6. REFERENCES
[1] Baraff, D. and Witkin, A. 1998. Large Steps in Cloth

Simulation. In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH
’98. ACM, New York, NY, USA, 43-54. DOI=
http://dx.doi.org/10.1145/280814.280821

[2] Baskaran, M. and Bordawekar, R. 2009. Optimizing Sparse
Matrix-vector Multiplication on GPUs. IBM Research
Report RC24704, Apr. 2009.

[3] Bell, N., Garland, M. 2009. Implementing Sparse Matrix-
Vector Multiplication on Throughput-oriented Processors. In
SC’09: Proceedings of the Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, New
York, NY, USA. 1-11. DOI=
http://dx.doi.org/10.1145/1654059.1654078

[4] Bolz, J., Farmer, I., Grinspun, E. and Schröder, P. 2003.
Sparse Matrix Solvers on the GPU: Conjugate Gradient and
Multigrid. ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03.
ACM, New York, NY, USA. 917-924. DOI=
http://dx.doi.org/10.1145/1201775.882364

[5] Comas, O., Taylor, Z.A., Allard, J., Ourselin, S., Cotin, S.
and Passenger, J. 2008. Efficient Nonlinear FEM for Soft
Tissue Modelling and its GPU Implementation within the
Open Source Framework SOFA. In Proceedings of the 4th
International Symposium on Biomedical Simulation,
ISBMS’08, Springer-Verlag, Berlin, Heidelberg. 28-39.
DOI= http://dx.doi.org/10.1007/978-3-540-70521-5_4

[6] CUSP: Generic Parallel Algorithms for Sparse Matrix and
Graph Computations. http://code.google.com/p/cusp-library/

[7] Etzmuss, O., Keckeisen, M. and Strasser, W. 2003. A Fast
Finite Element Solution for Cloth Modelling. In Proceedings
of the 11th Pacific Conference on Computer Graphics and
Applications. Oct. 2003, 244-251. DOI=
http://dx.doi.org/10.1109/PCCGA.2003.1238266

[8] Georgii, J., Echtler, F. and Westermann, R. 2005. Interactive
Simulation of Deformable Bodies on GPUs. In Proceedings
of Simulation and Visualization 2005, 247-258.

[9] Georgii, J. and Westermann, R. 2005. Mass-Spring Systems
on the GPU. Simulation Modelling Practice and Theory, 13,
8, 693-702. DOI=
http://dx.doi.org/10.1016/j.simpat.2005.08.004

[10] Hughes, C., Grzeszczuk, R., Sifakis, E., Kim, D., Kumar, S.,
Selle, A., Chhugani, J., Holliman, M. and Chen, Y. 2007.
Physical Simulation for Animation and Visual Effects:
Parallelization and Characterization for Chip
Multiprocessors. In Proceedings of the 34th Annual
International Symposium of Computer Architecture, ISCA
’07. ACM, New York, NY, USA, 220-231. DOI=
http://dx.doi.org/10.1145/1273440.1250690

[11] Kasap, M. and Magnenat-Thalmann, N. 2007. Parameterized
Human body Model for Real-Time Applications. In
Proceedings of the 2007 International Conference on
Cyberworlds. IEEE Computer Society, 160-167.

[12] Keckeisen, M. and Blochinger, W. 2004. Parallel Implicit
Integration for Cloth Animations on Distributed Memory

Architectures. In Proceedings of Eurographics Symposium
on Parallel Graphics and Visualization.

[13] Krüger, J. and Westermann, R. 2003. Linear Algebra
Operators for GPU Implementation of Numerical
Algorithms. ACM SIGGRAPH 2003 Papers, SIGGRAPH
’03. ACM, New York, NY, USA. 908-916. DOI=
http://dx.doi.org/10.1145/1201775.882363

[14] Lario, R., Garcia, C., Prieto, M. and Tirado, F. 2001. Rapid
Parallelization of Multilevel Cloth Simulator using OpenMP.
In Proceedingsof European Workshop on OpenMP
(EWOMP 2001).

[15] Li, H., Wan, Y. and Ma, G. 2011. A CPU-GPU Hybrid
Computing Framework for Real-time Clothing Animation.
2011 IEEE International Conference on Cloud Computing
and Intelligence Systems (CCIS), 391-396.

[16] Lim, M., Kevelham, B., Nijdam, N. and Magnenat-
Thalmann, N. 2011. Rapid Development of Distributed
Applications using High-Level Communication Support.
Journal of Network and Computer Applications. 34, 1, 172-
182. DOI= http://dx.doi.org/10.1016/j.jnca.2010.08.003

[17] Lyard, E. and Magnenat-Thalmann, N. 2008. Motion
Adaptation based on Character Shape. Computer Animation
and Virtual Worlds. 19, 3-4 (Sep. 2008), 189-198. DOI=
http://dx.doi.org/10.1002/cav.v19:3/4

[18] Magnenat-Thalmann, N., Kevelham, B., Volino, P., Kasap,
M. and Lyard, E. 2011. 3D Web-Based Virtual Try On of
Physically Simulated Clothes. Computer Aided Design and
Applications, 8, 2, 163-174.

[19] Magnenat-Thalmann, N., Volino, P., Kevelham, B., Kasap,
M., Tran, Q., Arevalo, M., Priya, G. and Cadi, N. 2011. An
Interactive Virtual Try On. In Proceedings of Virtual Reality
Conference (VR), 2011 IEEE. IEEE, (Mar. 2011), 263-264.

[20] Mosegaard, J., Herborg, P. and Sorensen, T.S. 2005. A GPU
Accelerated Spring Mass System for Surgical Simulation.
Studies in Health Technology and Informatics, 111, 342-
348.

[21] Mosegaard, J. and Sorensen, T.S. 2005. GPU Accelerated
Surgical Simulators for Complex Morphology. In
Proceedings of IEEE Virtual Reality (VR), 2005. 147-153.
DOI= http://dx.doi.org/10.1109/VR.2005.1492768

[22] NVIDIA Corporation. 2012. NVIDIA CUDA C
Programming Guide. Version 4.2.

[23] Owens, J. 2005. Streaming Architectures and Technology
Trends. ACM SIGGRAPH 2005 Courses. ACM, New York,
NY, USA.

[24] Provot, X. 1995. Deformation Constraints in a Mass-Spring
Model to Describe Rigid Cloth Behavior. In Proceedings of
Graphics Interface ’95. 147-154.

[25] Rasmusson, A., Mosegaard, J. and Sorensen, T.S. 2008.
Exploring Parallel Algorithms for Volumetric Mass-Spring-
Damper Models in CUDA. In Proceedings of the 4th
International Symposium on Biomedical Simulation, ISBMS
‘08. Springer-Verlag, Berlin, Heidelberg. 49-58. DOI=
http://dx.doi.org/10.1007/978-3-540-70521-5_6

[26] Rodriguez-Navarro, J. and Susin, A. 2006. Non Structured
Meshes for Cloth GPU Simulation using FEM. 3rd Workshop
in Virtual Reality, Interactions and Physical Simulations,
VRIPHYS’06, Eurographics Ed., 1-7.

[27] Romero, S., Romero, L. and Zapato, E. 2000. Fast Cloth
Simulation with Parallel Computers. In Proceedings from the
6th International Euro-Par Conference on Parallel
Processing, Euro-Par ’00. Springer-Verlag, 491-499.

[28] Selle, A., Su, J., Irving, G. and Fedkiw, R. 2009. Robust
High-Resolution Cloth Using Parallelism, History-Based
Collisions and Accurate Friction. IEEE Transactions on
Visualization and Computer Graphics. 15, 2 (Mar. 2009),
339-350.

[29] Taylor, Z., Cheng, M. and Ourselin, S. 2007. Real-Time
Nonlinear Finite Element Analysis for Surgical Simulation
using Graphics Processing Units. Medical Image Computing
and Computer-Assisted Intervention: MICCAI 2007, Lecture
Notes in Computer Science, 4791, 701-708.

[30] Taylor, Z., Cheng, M. and Ourselin, S. 2008. High-Speed
Nonlinear Finite Element Analysis for Surgical Simulation
using Graphics Processing Units. IEEE Transactions on
Medical Imaging, 27, 5 (May 2008), 650-663.

[31] Tejada, E. and Ertl, T. 2005. Large Steps in GPU-based
Deformable Bodies Simulation. Simulation Modelling
Practice and Theory, 13, 8, 703-715.

[32] Thomaszewski, B., Pabst, S. and Blochinger, W. 2008.
Parallel Techniques for Physically Based Simulations on
Multi-core Processors Architectures. Computers and
Graphics. 32, 1, 25-40. DOI=
http://dx.doi.org/10.1016/j.cag.2007.11.003

[33] Volino, P., Magnenat-Thalmann, N. and Faure, F. A Simple
Approach to Nonlinear Tensile Stiffness for Accurate Cloth
Simulation. 2009. ACM Transactions on Graphics. 28, 4
(Sep. 2009), 105:1-105:16. DOI=
http://dx.doi.org/10.1145/1559755.1559762

[34] Zara, F., Faure, F. and Vincent, J-M. 2004. Parallel
Simulation of Large Dynamic Systems on a PCs Cluster:
Application to Cloth Simulation. Int. J. Comput. Appl. 56, 3
(Mar. 2004), 173-180.

