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ABSTRACT  
In this paper we discuss our Virtual Try On (VTO) from the 
perspective of performance. The VTO is an application which 
assists users in the evaluation of physically simulated garments on 
a size-correct virtual representation of their own body. Where in 
previous work we discussed its features and implementation, here 
we analyze its performance and identify those components which 
would benefit most from additional optimization efforts. We then 
detail our ongoing efforts and achieved results with regards to the 
optimization of the application, by making use of GPU 
computation, focused on the accurate physical simulation of 
garments. 

Categories and Subject Descriptors 
I.3.8 [Computer Graphics]: Applications 

General Terms 
Performance. 

Keywords 
virtual try on, cloth simulation, gpu optimization 

1. INTRODUCTION 
The Virtual Try On is an application that allows customers to 
evaluate garments through physical simulation of these garments 
on an animated virtual avatar sized to their measurements. Besides 
allowing for the evaluation of style, an ideal VTO should also 
address the issue of "fit". That is, how a certain garment fits on the 
customer's body, either in a static pose or in a dynamic scenario 
such as a walk. To this effect, our VTO integrates three main 
modules:  

• A body sizing module which generates size-accurate 
avatars based on a generic template [1]. 

• A motion retargeting module which adapts the 
prerecorded animation to the model [17]. 

• A garment simulation module which simulates the 
dynamic behavior of the 3D garments [33].  

Through this integration – which also includes various other 
functionalities - and by means of a clean API, the VTO has been 
used in a wide variety of application scenarios. Examples range 
from web-based applications [18] and public demonstrators [19], 
to remote AR scenarios [16] and web services. 

Though in terms of functionality this VTO has all the features we 
consider essential, through its various applications we have found 
that its performance is not optimal. In this paper we will therefore 
address the issue of VTO performance and our ongoing progress 
in its optimization using GPU computation. 

The paper is organized as follows: We will first take a look at the 
Virtual Try On and its functionalities in section 2. We will present 
an analysis of its performance and identify those bottlenecks 
whose performance improvement would benefit us most. In 
section 3 we will present previous work related to the GPU 
optimization of physical simulation, focusing on numerical 
methods and the related linear algebra operators, as well as 
mechanics. Subsequently in section 4 we will present our ongoing 
efforts towards the GPU optimization of our physical garment 
simulations using the CUDA API [22] as well as the achieved 
performance results. Conclusions and future work will be detailed 
in section 5.  

2. THE VIRTUAL TRY ON 
Where a Virtual Try On system certainly is of value when 
evaluating garments from the perspective of style, it would be of 
benefit to also address the issue of "fit". That is, how a certain 
garment fits on the customer's body, either in a static pose or in a 
dynamic scenario such as a walk.  

The issue of style is relatively easily addressed by allowing the 
user to “dress” a virtual model with various garment meshes, 
which can be customized along the options provided by the 
designers in their collections. One can consider such possibilities 
as various fabrics, colors and perhaps accessories.  

The issue with introducing fit into a Virtual Try On is the 
additional requirements this imposes. Evaluating fit will only ever 
work when we base our application on a 3 dimensional avatar 
which has virtual body measurements exactly matching those of 
the customer. We have chosen to provide this by means of a 
resizable template body model [11]. When including animation 
however, care needs to be taken of the discrepancies that arise 
between the usually prerecorded body animation and the new 
morphology of the virtual model. With this issue in mind, we have 
included a motion retargeting module which maintains the 
coherence between morphology and animation [17]. 

One of the bigger issues to address however is that of the 
garments itself. To evaluate fit, it is no longer enough to make use 
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of static meshes. The fit of a garment addresses the interplay 
between a garment and the body. To virtually evaluate this, we 
use a system for the physical simulation of garments [33] whose 
input consists of virtual garments constructed from accurate 2 
dimensional pattern data, as their real counterparts would be.  

With regards to the physical simulation itself there are two 
competing issues. We ideally would like the system to perform in 
real-time. But on the other hand, to properly evaluate garment fit, 
we want our simulation to be accurate. Visually compelling 
garment simulation in real-time is achievable. Physically accurate 
simulation is a far more difficult proposition.  

2.1 Application Performance 
In our extensive use of the VTO under various circumstances we 
noticed that, despite our best efforts, the performance of the VTO 
is not what we would like it to be. The question then becomes: “In 
what way does the VTO underperform and what causes this?“  

When regarding VTO performance, there are two areas which take 
a significant amount of computational effort which might be at the 
root of our perceived problems. One is the body, including its 
animation, resizing and animation retargeting. The other is the 
real-time garment simulation. 

With regards to the body and its interactions, we have performed a 
series of timing runs of the body, in full animation while 
simultaneously performing sizing operations. The body at this 
point is not wearing any garments, so there is no influence of the 
garment simulation. Figure 1 shows a fairly typical graph of 
application performance of one such instance of measurement 
over a period of 20 seconds.  

 

Figure 1. VTO performance of a model undergoing sizing 
interactions 

There are two things to note. First of all, overall performance of 
just the animated template body lies at a reasonable average of 
102 frames per second. As illustrated in Figure 2, sizing the body 
with respect to a girth measurement triggers the body sizing 
module to deform the mesh. Sizing any lengths affecting the 
underlying skeleton triggers both the body sizing module and 
motion retargeting module. The various dips in the graph are such 
sizing occurrences with the lower dips caused by a sizing 
affecting the skeleton. On average such a worst-case manipulation 
takes around 0.2 seconds to complete for a template body with an 
animation of 350 key-frames (for a total animation of 14 seconds).  

 

Figure 2. A typical sequence of steps performed by the VTO 
from one frame to the next 

What is more interesting to note however, is not the exact time it 
takes to perform the operation. While significant in an isolated 
instance, in the overall scheme of things such interactions are 
exactly that: isolated instances. At a maximum they occur just 
once every several seconds. And when performed in a typical 
static sizing scenario (where the model is not yet animated) such a 
temporary drop in performance is not disturbing if it is noticeable 
at all.  

 

Figure 3. A cocktail dress, frilled dress, a pair of pants, a pair 
of shorts, a flared top and a top with sleeves as used in the 

VTO performance evaluations 

To evaluate VTO garment simulation performance we’ve taken a 
particular set of garments as practically used in our VTO 
demonstrations (see Figure 3). This set of garments has been used 
in our VTO demonstrator as described in [19].  

To aid in the performance of the simulation, the garments use two 
mesh resolutions. An invisible lower resolution garment mesh is 
used for the actual simulations, which in turn controls a higher 
resolution visual mesh which is rendered. Furthermore, the VTO 
allows for two simulation modes. In real-time a quasi-static 
simulation mode is used with the aim to improve performance 
while maintaining simulation accuracy. A fully dynamic 
simulation mode is used in conjunction with an integrated video 
recording module. This allows the user to preview a real-time 
result, while also being able to save a movie with high-quality 
simulation in a matter of mere minutes. Table 1 lists the number 
of elements per (combination of) garment(s) as well as the 
averagely achieved frame-rate and the time needed to go through a 



full high-quality non-real-time simulation cycle for an animation 
of 18 seconds in length.  

The hardware used in these evaluations is a desktop PC with an 
Intel Core i7 X980 CPU at 3.33GHZ, 12GB of RAM and an 
NVIDIA GeForce GTX 480 GPU. 

 

Table 1. VTO performance per garment (combination) 

Garment Elements Frames/s 
HQ 

Duration 
Cocktail Dress 2425 13.8 492s 

Flare Top 2906 18.1 646s 

Shorts 2986 17.23 151s 

Pants 3970 16.69 175s 

Shorts + Flare Top 5892 12.77 1045s 

Sleeves Top 6274 13.8 906s 

Pants + Flare Top 6876 12.3 1181s 

Dress Frills 7092 10.47 401s 

Shorts + Sleeves Top 9260 10.43 1273s 

Pants + Sleeves Top 10244 9.9 1396s 

 

The simulation timings themselves are influenced by a variety of 
factors. The density of the simulated garment meshes (that is, the 
number of elements it has) is one factor. While all garments 
evaluate both tensile and bending stiffness, their (material) 
behavior expressed in possibly non-linear strain-stress curves 
might differ, affecting simulation performance. Materials with a 
significantly higher stiffness than others will typically take longer 
to simulation for example. 

All these various influences notwithstanding, what can easily be 
gathered from the listed performance figures is that each and 
every one of them can at most be called “interactive”. While we 
have put them to good use, none of them are as real-time as we 
would like to see. Ideally we would like to achieve the results we 
currently obtain in our non-real-time, fully dynamic, high-quality 
simulation mode, but in real-time. The performance figures in 
Table 1 for the high-quality simulation do however clearly 
indicate that the current VTO is far removed from achieving that 
feat.  

In summary we can state that the component within the VTO 
which would most benefit most from improved performance is the 
garment simulation module. As such, the remainder of this article 
will discuss how to achieve such improved performance and will 
particularly focus on the GPU as a computation platform to realize 
this goal. 

 

3. RELATED WORK 
Optimization of garment simulation performance can be 
approached from two directions. Either you simplify the 
simulation problem itself. That is, you select a simplified and 
computationally less intensive mechanical model, such as straight-
forward mass-spring model rather than the current (finite) 

element-based solution. Or you reduce computational load by 
simplifying the simulated meshes to ones with a lower element 
density. The problem here is that both solutions will come at the 
cost of reduced accuracy, which is something we would like to 
avoid. The second direction would be to simply apply more 
computational power to the problem. 

The VTO in its evaluated implementation is a single-threaded 
application. And where increased processing power is no longer 
found in single cores, parallel execution utilizing multi-core 
hardware or even GPUs seems to be a more viable option. 

The parallelization of cloth and garment simulations has seen 
various platform specific contributions on (what was then) state-
of-the-art hardware. Looking at CPU based solutions we see 
successful parallelization attempts using specialized server 
hardware [14][27], networked PCs [12][34] and multi-core 
processors[10][28][32]. While we are predominantly interested in 
GPU based solutions, what we can take away from these 
contributions is the following: Both the mechanical and numerical 
components of physical simulations benefit from a data parallel 
approach and are of a streaming nature. 

Especially the latter point is of importance since, as stated by 
[23], “the graphics pipeline is a good match for the stream 
model…”. And with the introduction of programmability in the 
graphics pipeline, graphics processors started to be used – besides 
their usual rendering tasks – as general purpose stream processors, 
a concept often referred to as GPGPU (General-Purpose 
computing on Graphics Processing Units). 

3.1 Numerical Algorithms and Linear 
Algebra operators 
When considering the physical simulation of garments, an implicit 
integrator such as described by Baraff and Witkin [1] is a 
requirement to ensure simulation stability without having to resort 
to unfeasibly small time steps. The introduced implicit Euler 
integration computationally requires the multiplication of a very 
sparse matrix with a dense vector as part of the employed 
Conjugate Gradient method. While dense matrix-vector 
operations are fairly trivially parallelized in a GPU context, sparse 
matrix operations require more care. 

In a shader based setting, both Krüger and Westermann [13] and 
Bolz et al. [4] map linear algebra operations to a GPU context. 
Sparse random matrices - as often found in simulations involving 
unstructured meshes - require that only non-zero elements are 
stored and used in computation. Both aforementioned papers take 
a slightly different approach. Non-zero elements in each column 
are stored as vertex data in [13], with the position ensuring the 
element gets rendered in the same location as if it were stored as a 
2D texture, while the color holds the value of the element. In [4] 
however, the sparse matrix is split into two textures to hold non-
zero elements. One texture holds all entries on the matrix 
diagonal. A second texture holds all off-diagonal elements of each 
row, compacted into a single texture. Two additional textures are 
then needed to hold offsets for the start of each row's data, as well 
as its column location. In both cases performance improvements 
of up to an order in magnitude are reported. 

For the CUDA platform, Bell and Garland [3] provide various 
sparse-matrix vector operation implementations, based on 
standard storage formats among which the CSR format relevant to 
our random sparse data. Each row of sparse matrix data is handled 



by a single warp of 32 threads. The result of these efforts can be 
found in the CUDA based CUSP [6] library for sparse linear 
algebra and graph computations. Baskaran and Bordawekar [2] 
implement a fairly similar CSR based approach, though they use a 
half-warp per row with added alignment adjustment to ensure 
coalescing. They report similar or improved performance over 
CUSP, at the cost of increased memory requirements 

3.2 GPU optimized mechanics 
Early work in GPU optimized mechanics predominantly focuses 
on the simulation of 3D (tetrahedralized) objects. The simulation 
of 3-dimensional deformable bodies at an interactive rate is 
presented by Georgii et al. in [8]. They employ a linear mass 
spring model with a Verlet integrator, implemented in fragment 
shaders. As an extension the authors explore the benefits of an 
edge centric or point centric approach to the calculation of forces 
[9]. The point-centric approach (PCA) immediately calculates the 
forces for each node by looking at connected neighbor nodes. The 
PCA approach has the downside that spring forces are computed 
twice. This double computation is avoided with an edge-centric 
approach (ECA). Using an ECA forces are calculated for each 
edge/spring and the contributions are added to the connected 
nodes. This requires a two step approach in which forces are 
computed per edge and stored in a first pass, while the final nodal 
forces are then computed by summing the associated edge forces 
in a second pass. The authors note that the ECA is generally the 
faster performer and increasingly so for irregular meshes.  

In close relation to this work stands the work of Mosegaard et al. 
[20][21] where a volumetric spring-mass simulator, using Verlet 
integration, is used in a surgical simulator. The deformable object 
is a volumetric model based on voxel data from a CT dataset. Two 
different addressing approaches are taken with regards to spring 
connections: An explicit approach where each particle maintains a 
list of particle indices to which it is connected and an implicit 
approach which makes smart use of the 3D voxel grid by 
implicitly connecting a node for each voxel with its 18 direct 
neighbors. Explicit addressing has the downside that an additional 
lookup is needed to find the neighboring particle positions, which 
can be a limiting factor in the simulation's performance. Implicit 
addressing allows for the use of a simple offset to find the 
connected particle's information. While in their shader based 
implementation the implicit solution has twice the performance of 
the explicit solution, this result changes in their later CUDA based 
implementation [25]. This is mostly due to the inactive particles 
with in a grid. While these particles could be easily masked out 
with the shader based approach using a hardware accelerated 
mask, this is no longer the case when using CUDA. This change 
in performance behavior does however come with the benefit of a 
simpler implementation and the support of arbitrary geometry 
when using explicit addressing. 

Tejada and Ertl [31] address the inherent instability of explicit 
integration with an implicit Euler integrator along the lines of [1] 
to be able to simulate stiff materials at larger time steps and higher 
stability. The solver's matrix operations are implemented along the 
lines of [13], exploiting new hardware capabilities to reduce the 
number of passes needed for reduction and multiplication 
operations. 

In the context of garment simulation, the work of Rodriguez-
Navarro and Susin [26] is the first to consider a co-rotational 
Finite Element Method approach to simulation on the GPU. 

Based on the work by Etzmuss et al. [7] they implement a garment 
simulator for virtual avatars, using implicit integration and GPU 
based collision detection. Their reported speedup over an 
equivalent CPU implementation lies in an order of a magnitude.  

In the work of Comas et al. [5], the CUDA API is used to 
implement soft tissue simulation based on the TLED algorithm for 
nonlinear dynamic finite elements. The work is implemented as 
part of the open source SOFA medical simulation framework. 
TLED had had previously been implemented using a shader based 
approach [29][30]. The authors describe a two stage solution to 
avoid the inherent difficulties of creating a fully functional 
scattered write solution. First element stresses are converted to 
nodal force contributions. In a second stage for each node the 
contributions by the various elements it's attached to are gathered 
to obtain the final nodal forces. Given the use of unstructured 
meshes, memory access is fairly random. Texture memory is used 
for global memory access, which - due to a texture's cache - 
should reduce the performance hit usually associated to 
uncoalesced reads. The authors use page-locked host memory to 
transfer data between CPU and GPU.  

Li et al. [15] present a hybrid CPU-GPU approach to the 
simulation of clothing. Using a mass-spring approach to the 
simulation of clothing, they employ a spatial subdivision approach 
to collision detection. All states are handled on the GPU via the 
CUDA API. The authors find however that the handling of 
deformation constraints as presented by [24] is more time-
consuming when performed on the GPU than when this is done 
on the CPU. They therefore handle this stage on the CPU, once 
the GPU force computation has finished. To hide some of the 
costs associated with CPU/GPU data transfer, the ability to 
asynchronously launch kernels is used. In their evaluation they 
note a performance improvement in the order of a magnitude of 
their hybrid approach, over a CPU only solution. A GPU only 
solution falls somewhere in between. 

4. GPU OPTIMIZATION 
In this section we discuss our GPU optimized framework for the 
physical simulation of cloth and garments. The main goal of this 
framework, as should have become apparent, is to achieve 
improved performance with respect to our VTO platform. As such 
we desire ideally real-time performance in a fully dynamic 
simulator, which is able to accurately simulate the nonlinear 
behavior of fabrics. We will focus on the simulation itself, but of 
course there are additional requirements to our framework such as 
the seamless integration with our existing data and content 
pipeline, as well as ease of use for application developers through 
a clean API. 

4.1 The framework 
Our simulation framework, written in C++, consists of a templated 
set of objects which allow for instantiations based on floating 
point precision (single or double) and backend (either CPU or 
GPU). The GPU implementation which we’ll discuss here is 
based on the CUDA API. With regards to the mechanical and 
numerical components of our framework, an abstract and 
simplified overview of their organization is given in Figure 4. 
This overview ignores all other components such as those related 
to I/O, rendering and other functionalities. 

The GarmentObject is the main object within our framework and 
is what controls the full simulation cycle. It holds the garment’s 



mechanical state (positions, velocities, masses, etc.), one or more 
Elements, a Solver and possibly an external ForceField (for such 
effects as wind and drag.) It is this GarmentObject which is used 
by the application developer and which hides all the necessary 
functionality behind an easy to use API. The main computational 
components are listed on the right side of the diagram and 
effectively hold the CUDA kernels launched for the computation 
of forces, force Jacobians (Elements) and numerical integration 
(Solvers). 

 

Figure 4. A structural overview of our GPU simulation 
framework 

4.1.1 The Solvers 
The responsibility of a solver is to update a system’s state from its 
current frame/time to the next. As such, once invoked, it will 
request a GarmentObject’s Elements to compute the forces and 
possibly force Jacobians based on a specific state. Our framework 
supports two solvers; an explicit Runge-Kutta-Fehlberg solver, as 
well as an implicit Euler solver. In practice, the implicit solver is 
our solver of choice. The explicit solver is mainly reserved for 
those cases where we need the associated high accuracy or when 
we want to establish a ground truth. 

The explicit solver has a fairly straight-forward structure. Its 
computation consists of dense vector operations and allows for a 
trivial implementation.  

For the implicit solver we take a somewhat different approach 
than the methods described in section 3.1. For one, we don’t 
explicitly compute and store a sparse matrix. Instead we compute 
the sparse-matrix/vector product on the fly by deferring the 
responsibility to each individual element, be it a triangular 
element or a spring. Taking note of the fact that each element’s 
contribution to the overall Jacobian matrix can be formulated as 
the outer product (a bT) of two vectors, its multiplication with an 
arbitrary input vector (a bT)v can be rewritten to a(bT v). This is a 
dot-product and a scalar product, rather than a more complex 
matrix/vector product.  

Due to this structure, the computation of the sparse-matrix/vector 
product uses two CUDA kernels. The first kernel computes the 
product of an element’s Jacobian contributions with the relevant 
parts of the vector, while a second kernel sums all the individual 
contributions into the final dense result vector. 

As such, we avoid the need for the setup or update of a sparse 
matrix data structure. What is more, this computational structure 
in the end closely resembles the computational structure for 
element forces as we will come to discuss, making computational 
organization fairly straight-forward.  

4.1.2 The Elements 
To evaluate the tensile and bending behavior – and the associated 
forces – of the garments we simulate, we integrated three different 
element types. Each element maintains its own specific topology 
information and other (possibly pre-computed) per element 
values. 

In line with [CTO08] we have found that an element centric 
approach using two kernels for force computation is relatively 
straight-forward to implement and allows for good performance. 
As was discussed for our implicit solver, the computation of 
forces takes two steps. A first kernel computes the forces for the 
nodes in each triangular element or for the individual spring. A 
second kernel then combines all the forces for each node by 
summing the contributions of each attached element. This second 
kernel relies on a lookup table which for each node stores which 
elements it attaches to. This same lookup table is also used by our 
earlier discussed implementation of the implicit solver. 

Memory access with regards to the second kernel, but also with 
regards to the state values accessed in the first kernel is largely 
unstructured. In an attempt to alleviate most of the performance 
penalty involved in unstructured memory reads using CUDA, we 
bind all the arrays accessed in an unstructured manner to a 
texture. Through texture fetching and the associated caching 
available, we find that we still obtain good performance.   

 

Figure 5. Our framework evaluates tensile stiffness based on a 
triangular element (left) and bending stiffness based on a 

“basic shell triangle” (right). 

The tensile element is based on the mass-lumped particle system 
as described in [33]. The triangular element (Figure 5, left), has a 
fairly straight-forward expression of the element forces and force 
Jacobian. As such it is straight-forward to implement, while it still 
allows us to simulate the highly nonlinear behavior of fabrics. 

Bending stiffness within fabrics is often low – especially 
compared to tensile stiffness – but its accurate evaluation is 
necessary for realistic simulation results related to folds and 
wrinkles. To evaluate bending stiffness we support two element 
types; a so-called “basic shell triangle” (Figure 5, right) as well as 
a straight-forward spring. In the former case bending stiffness is 
evaluated through the positioning of the 3 outer nodes with 
respect to the inner triangle, while in the latter case two nodes are 
connected by a spring across the shared edge of two triangles. In 
practice we usually resort to the basic shell triangle element for 
our bending behavior. 

To model material behavior we support non-linear strain-stress 
curves. These curves are implemented as piecewise cubic 
polynomial splines whose constants are easily stored within float4 



elements. While splines of a higher degree would be possible, we 
find in practice this is not necessary. The evaluation of both the 
stress and stress-derivative has a simple structure and is 
implemented as a straight-forward device function. Our platform 
allows for both a global material behavior as well as different 
materials per triangular or spring element to allow varying 
material behavior across a fabric. 

4.2 Results and performance 
To evaluate the performance of our framework, we have taken a 
1m2 square piece of fabric which is horizontally clamped at its top 
edge. The fabric consists of between 200 and 20k triangles. We 
used an implicit Euler solver fixed at 16 Conjugate Gradient 
iterations with a fixed time step of 0.01 seconds.  

We tested two scenarios as illustrated in Figure 6; A fabric with 
only tensile stiffness and a fabric with both tensile and a high 
bending stiffness.  

 

Figure 6. Simulation of a 5000 element 1m2 fabric. Tensile only 
(left) and tensile + bending (right). 

Performance was evaluated on a NVIDIA GeForce GTX 480, 
which is a GPU based on the Fermi architecture. All timings 
reported are the exact simulation times. Data transfer between 
CPU and GPU is not taken into account. 

All performance tests simulated cloths of varying element 
densities through a simulation cycle of several simulated seconds. 
Timing results were then averaged for 100 timesteps, or 1 full 
simulated second. 

 
Figure 7. Tensile: average time taken in ms for 100 timesteps 

4.2.1 Tensile Element 
When considering the scenario with only tensile stiffness as 
various fabric resolutions, we get a performance graph as 
illustrated in Figure 7. Even at 20k elements, we achieve a 
performance of about 55 time steps per second. 

Comparing this to the performance results mentioned in [33] is 
somewhat difficult since no exact hardware details are listed. 
However, where they report the ability to iterate over 17.5k 
elements per second, a conservative estimate of at least an order 
of magnitude improvement seems reasonable. 

If we evaluate the computation time spent per triangular element, 
we get a performance graph as illustrated in Figure 8. What this 
graph illustrates is that the performance starts to achieve its peak 
from around 5000 elements and higher. Though the exact shape of 
this graph depends on the hardware used, its global shape is 
explained by the fact that only at a significant amount of elements 
a reasonable level of occupancy is achieved and some of the 
latencies associated with memory access are hidden.  

 

Figure 8. Simulation time per triangular element per 100 
iterations in ms 

Overall the simulation performance seems to keep up fairly well 
with increasing mesh densities. Pushing our simulation to the 
limit, we see that in the scenario mentioned we still achieve 2 time 
steps per second for a 1million element cloth. Although the 16 CG 
iterations are then by no means enough for proper simulation. 

4.2.2 Tensile and Bending Element 
When adding bending elements into the mix, the situation 
becomes slightly different. Of course the computational 
complexity increases which has an effect on performance. As 
shown in Figure 9, the performance at 20k elements is still 37 
time steps per second. Performance behavior sometimes becomes 
slightly irregular. With varying amounts of elements we see 
certain repeatable performance sweet spots such as the sudden dip 
at 7.2k elements.  

Given the particular bending element as shown in Figure 5 (right) 
there is relatively more irregular memory access to computation 
than with the tensile elements alone. There are for example twice 
as many nodal values to retrieve per element. With the 
computation itself remaining fairly simple, it becomes more 
difficult to find a good balance between memory accesses and 
computation. 



 

Figure 9. Tensile + Bending: average time taken for 100 
timesteps 

Overall though the per-element performance (Figure 10) follows a 
similar pattern as in the tensile-only case. Optimal performance 
starts to be achieved slightly later, from 7.2k elements and higher. 

 

Figure 10. Simulation time per tensile+bending element per 
100 iterations in ms 

While material nonlinearities are evaluated through our piecewise 
polynomial splines, we do find that in their current 
implementation performance is not ideal due to possible branch 
divergence between threads. 

5. CONCLUSION 
With our framework in place, we have found that we can achieve 
a considerable speedup compared to our CPU based simulations. 
As such, the GPU optimization of our garment simulations seems 
to be a valuable avenue to pursue. Real-time performance is 
promising. 

Because the performance scales well with increasing mesh 
density, we also find that the framework might be valuable in non-
real-time scenarios with high garment mesh densities. 

Future work will focus on the deeper evaluation of achieved 
performance and comparison to other platforms, as well as the 
improvement of our framework with respect to some of the noted 
performance bottlenecks.  

Further avenues for investigation are the integration of collision 
detection and handling, either based on a full GPU solution or by 
means of a hybrid CPU-GPU alternative.  
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