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ABSTRACT

In this paper we discuss our Virtual Try On (VTObprh the
perspective of performance. The VTO is an applicativhich
assists users in the evaluation of physically sited garments on
a size-correct virtual representation of their dvady. Where in
previous work we discussed its features and impheation, here
we analyze its performance and identify those corepts which
would benefit most from additional optimizationats. We then
detail our ongoing efforts and achieved resulthwétgards to the
optimization of the application, by making use ofPG
computation, focused on the accurate physical sitial of
garments.

Categories and Subject Descriptors
1.3.8 [Computer Graphics]: Applications

General Terms
Performance.
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1. INTRODUCTION

The Virtual Try On is an application that allowsstemers to
evaluate garments through physical simulation es¢hgarments
on an animated virtual avatar sized to their measents. Besides
allowing for the evaluation of style, an ideal VT$Dould also
address the issue of "fit". That is, how a cergamment fits on the
customer's body, either in a static pose or in @adyc scenario
such as a walk. To this effect, our VTO integratie®e main
modules:

e A body sizing module which generates size-accurate

avatars based on a generic template [1].

« A motion
prerecorded animation to the model [17].

¢ A garment simulation module which simulates the

dynamic behavior of the 3D garments [33].

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation om finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.
Conference’lpMonth 1-2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010...$10.00.

retargeting module which adapts the

Nadia Magnenat-Thalmann
MIRALab — University of Geneva
7 Route de Drize
1227 Carouge, Geneva, Switzerland
+41 22 3790969

thalmann@miralab.ch

Through this integration — which also includes was other
functionalities - and by means of a clean API, #i€®© has been
used in a wide variety of application scenariosarBgles range
from web-based applications [18] and public demmatsts [19],
to remote AR scenarios [16] and web services.

Though in terms of functionality this VTO has dietfeatures we
consider essential, through its various applicatiose have found
that its performance is not optimal. In this paperwill therefore
address the issue of VTO performance and our oggoiagress
in its optimization using GPU computation.

The paper is organized as follows: We will firdtdaa look at the
Virtual Try On and its functionalities in section\®e will present
an analysis of its performance and identify thosstlénecks
whose performance improvement would benefit us mast
section 3 we will present previous work relatedthe GPU
optimization of physical simulation, focusing on nmerical
methods and the related linear algebra operat@swell as
mechanics. Subsequently in section 4 we will presanongoing
efforts towards the GPU optimization of our phykigarment
simulations using the CUDA API [22] as well as taehieved
performance results. Conclusions and future wotkhei detailed
in section 5.

2. THE VIRTUAL TRY ON

Where a Virtual Try On system certainly is of valwhen

evaluating garments from the perspective of siyleould be of

benefit to also address the issue of "fit". Thathiesw a certain
garment fits on the customer's body, either inaticspose or in a
dynamic scenario such as a walk.

The issue of style is relatively easily addressgdallowing the
user to “dress” a virtual model with various garmemeshes,
which can be customized along the options provitigdthe
designers in their collections. One can consideh qossibilities
as various fabrics, colors and perhaps accessories.

The issue with introducing fit into a Virtual Try mOis the
additional requirements this imposes. Evaluatibgvfil only ever
work when we base our application on a 3 dimensienatar
which has virtual body measurements exactly matchimse of
the customer. We have chosen to provide this bynmed a
resizable template body model [11]. When includargmation
however, care needs to be taken of the discrepmnia arise
between the usually prerecorded body animation tednew
morphology of the virtual model. With this issueniind, we have
included a motion retargeting module which mairgaithe
coherence between morphology and animation [17].

One of the bigger issues to address however is dfiathe
garments itself. To evaluate fit, it is no longapagh to make use



of static meshes. The fit of a garment addressesirtterplay
between a garment and the body. To virtually eveldhis, we
use a system for the physical simulation of gars¢d8] whose
input consists of virtual garments constructed fraoturate 2
dimensional pattern data, as their real countespeould be.

With regards to the physical simulation itself #heare two
competing issues. We ideally would like the systerperform in
real-time. But on the other hand, to properly eatdugarment fit,
we want our simulation to be accurate. Visually peiting
garment simulation in real-time is achievable. Rdally accurate
simulation is a far more difficult proposition.

2.1 Application Performance

In our extensive use of the VTO under various ciistances we
noticed that, despite our best efforts, the peréoree of the VTO
is not what we would like it to be. The questioerttbecomes: “In
what way does the VTO underperform and what catlsg®"

When regarding VTO performance, there are two andash take
a significant amount of computational effort whitiight be at the
root of our perceived problems. One is the bodgluiding its

animation, resizing and animation retargeting. Tileer is the
real-time garment simulation.

With regards to the body and its interactions, weehperformed a
series of timing runs of the body, in full animatiovhile

simultaneously performing sizing operations. Thalbat this

point is not wearing any garments, so there isnflaénce of the
garment simulation. Figure 1 shows a fairly typicahph of
application performance of one such instance of sonesment
over a period of 20 seconds.

Framerate over a period of 20 Seconds
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Figure 1. VTO performance of a model undergoing sing
interactions

There are two things to note. First of all, ovemdiformance of
just the animated template body lies at a reasenabérage of
102 frames per second. As illustrated in FigursiZing the body
with respect to a girth measurement triggers thdybsizing
module to deform the mesh. Sizing any lengths tffgcthe
underlying skeleton triggers both the body sizingdmle and
motion retargeting module. The various dips indh&ph are such
sizing occurrences with the lower dips caused bysizang
affecting the skeleton. On average such a worst-gaipulation
takes around 0.2 seconds to complete for a temptatg with an
animation of 350 key-frames (for a total animatidri4 seconds).
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Figure 2. A typical sequence of steps performed ke VTO
from one frame to the next

What is more interesting to note however, is neteRact time it
takes to perform the operation. While significantan isolated
instance, in the overall scheme of things suchracteons are
exactly that: isolated instances. At a maximum tohegur just
once every several seconds. And when performed typiaal
static sizing scenario (where the model is notaygtnated) such a
temporary drop in performance is not disturbing i§ noticeable
at all.

Figure 3. A cocktail dress, frilled dress, a pair bpants, a pair
of shorts, a flared top and a top with sleeves ased in the
VTO performance evaluations

To evaluate VTO garment simulation performance wdaken a
particular set of garments as practically used ur &TO
demonstrations (see Figure 3). This set of garmeeddeen used
in our VTO demonstrator as described in [19].

To aid in the performance of the simulation, themgants use two
mesh resolutions. An invisible lower resolutionrgant mesh is
used for the actual simulations, which in turn colst a higher
resolution visual mesh which is rendered. Furtheenthe VTO
allows for two simulation modes. In real-time a gustatic
simulation mode is used with the aim to improvef@enance
while maintaining simulation accuracy. A fully dyni

simulation mode is used in conjunction with an gnéted video
recording module. This allows the user to previeweal-time
result, while also being able to save a movie vhithh-quality

simulation in a matter of mere minutes. Table fslthe number
of elements per (combination of) garment(s) as vesl the
averagely achieved frame-rate and the time neaxgd through a



full high-quality non-real-time simulation cyclerfan animation
of 18 seconds in length.

The hardware used in these evaluations is a desk@mith an
Intel Core i7 X980 CPU at 3.33GHZ, 12GB of RAM aad
NVIDIA GeForce GTX 480 GPU.

Table 1. VTO performance per garment (combination)

Garment Elements | Frames/s Dut'agon
Cocktail Dress 2425 13.8 492s
Flare Top 2906 18.1 646s
Shorts 2986 17.23 151s
Pants 3970 16.69 175s
Shorts + Flare Top 5892 12.77 1045s
Sleeves Top 6274 13.8 906s
Pants + Flare Top 6876 12.3 11815
Dress Frills 7092 10.47 401s
Shorts + Sleeves Top 9260 10.43 1273s
Pants + Sleeves Top 10244 9.9 13965

The simulation timings themselves are influencedabxariety of
factors. The density of the simulated garment megtit is, the
number of elements it has) is one factor. While gdfments
evaluate both tensile and bending stiffness, theiaterial)
behavior expressed in possibly non-linear straiesst curves
might differ, affecting simulation performance. Mgals with a
significantly higher stiffness than others will tgally take longer
to simulation for example.

All these various influences notwithstanding, whah easily be
gathered from the listed performance figures is thach and
every one of them can at most be called “interattiWhile we
have put them to good use, none of them are aginealas we
would like to see. Ideally we would like to achiehe results we
currently obtain in our non-real-time, fully dynamhigh-quality
simulation mode, but in real-time. The performafficeires in
Table 1 for the high-quality simulation do howevelearly
indicate that the current VTO is far removed frochiaving that
feat.

In summary we can state that the component withan YTO
which would most benefit most from improved perfamoe is the
garment simulation module. As such, the remaind¢his article
will discuss how to achieve such improved perforoeaand will
particularly focus on the GPU as a computationftat to realize
this goal.

3. RELATED WORK

Optimization of garment simulation performance cde
approached from two directions. Either you simplifpe
simulation problem itself. That is, you select anglified and
computationally less intensive mechanical modethsas straight-
forward mass-spring model rather than the -currdiritd)

element-based solution. Or you reduce computatidoed by
simplifying the simulated meshes to ones with adowlement
density. The problem here is that both solutionl$ @@me at the
cost of reduced accuracy, which is something weldvtike to
avoid. The second direction would be to simply gpplore
computational power to the problem.

The VTO in its evaluated implementation is a sirhieaded
application. And where increased processing powaeroi longer
found in single cores, parallel execution utilizimulti-core
hardware or even GPUs seems to be a more viakmopt

The parallelization of cloth and garment simulasiomas seen
various platform specific contributions on (whatsataen) state-
of-the-art hardware. Looking at CPU based solutiares see
successful parallelization attempts using spe@adlizserver
hardware [14][27], networked PCs [12][34] and mulire
processors[10][28][32]. While we are predominartiterested in
GPU based solutions, what we can take away fronmsethe
contributions is the following: Both the mechaniaald numerical
components of physical simulations benefit fromagadparallel
approach and are of a streaming nature.

Especially the latter point is of importance sines, stated by
[23], “the graphics pipeline is a good match for the stre
model...” And with the introduction of programmability imet
graphics pipeline, graphics processors startea tosed — besides
their usual rendering tasks — as general purposarstprocessors,
a concept often referred to as GPGPU (General-Berpo
computing on Graphics Processing Units).

3.1 Numerical Algorithms and Linear

Algebra operators

When considering the physical simulation of garregah implicit
integrator such as described by Baraff and Witkij {s a
requirement to ensure simulation stability withbating to resort
to unfeasibly small time steps. The introduced iaiplEuler
integration computationally requires the multiptioa of a very
sparse matrix with a dense vector as part of th@l@red
Conjugate Gradient method. While dense matrix-wecto
operations are fairly trivially parallelized in &P@ context, sparse
matrix operations require more care.

In a shader based setting, both Kriiger and Westerif8] and
Bolz et al. [4] map linear algebra operations tGRU context.
Sparse random matrices - as often found in sinaratinvolving
unstructured meshes - require that only non-zeemnehts are
stored and used in computation. Both aforementiqragubrs take
a slightly different approach. Non-zero elementgath column
are stored as vertex data in [13], with the positamsuring the
element gets rendered in the same location asviéii¢ stored as a
2D texture, while the color holds the value of glement. In [4]
however, the sparse matrix is split into two tegtuto hold non-
zero elements. One texture holds all entries on rierix
diagonal. A second texture holds all off-diagorieheents of each
row, compacted into a single texture. Two additideatures are
then needed to hold offsets for the start of eaglisrdata, as well
as its column location. In both cases performanggrévements
of up to an order in magnitude are reported.

For the CUDA platform, Bell and Garland [3] provigarious
sparse-matrix vector operation implementations, ethason
standard storage formats among which the CSR foretatant to
our random sparse data. Each row of sparse maitaxigl handled



by a single warp of 32 threads. The result of theffmts can be
found in the CUDA based CUSP [6] library for spaisear

algebra and graph computations. Baskaran and Beifdaw2]

implement a fairly similar CSR based approach, ¢fothey use a
half-warp per row with added alignment adjustmemtensure
coalescing. They report similar or improved perfante over
CUSP, at the cost of increased memory requirements

3.2 GPU optimized mechanics

Early work in GPU optimized mechanics predominarfitiguses
on the simulation of 3D (tetrahedralized) objedise simulation
of 3-dimensional deformable bodies at an interactrate is
presented by Georgii et al. in [8]. They employirsedr mass
spring model with a Verlet integrator, implemeniadfragment
shaders. As an extension the authors explore thefibe of an
edge centric or point centric approach to the datmn of forces
[9]. The point-centric approach (PCA) immediateffctlates the
forces for each node by looking at connected neighbdes. The
PCA approach has the downside that spring foreec@mputed
twice. This double computation is avoided with alyecentric
approach (ECA). Using an ECA forces are calculdtedeach
edge/spring and the contributions are added toctivenected
nodes. This requires a two step approach in whiches are
computed per edge and stored in a first pass, lnéldinal nodal
forces are then computed by summing the assocéatgd forces
in a second pass. The authors note that the EQgrisrally the
faster performer and increasingly so for irreguteshes.

In close relation to this work stands the work ad9dgaard et al.
[20][21] where a volumetric spring-mass simulatesing Verlet
integration, is used in a surgical simulator. Tefodnable object
is a volumetric model based on voxel data from ad@faset. Two
different addressing approaches are taken withrdeg@ spring
connections: An explicit approach where each gartiwintains a
list of particle indices to which it is connecteddaan implicit

approach which makes smart use of the 3D voxel ¢nmd
implicitly connecting a node for each voxel witls il8 direct
neighbors. Explicit addressing has the downsideahadditional
lookup is needed to find the neighboring partiasipons, which
can be a limiting factor in the simulation's penfiance. Implicit
addressing allows for the use of a simple offsetfibal the

connected particle's information. While in theiradbr based
implementation the implicit solution has twice therformance of
the explicit solution, this result changes in tHeter CUDA based
implementation [25]. This is mostly due to the it particles
with in a grid. While these particles could be Basiasked out
with the shader based approach using a hardwarelesated
mask, this is no longer the case when using CUD#As Thange
in performance behavior does however come withbtheefit of a
simpler implementation and the support of arbitrggometry
when using explicit addressing.

Tejada and Ertl [31] address the inherent instgbdif explicit
integration with an implicit Euler integrator alotige lines of [1]
to be able to simulate stiff materials at largerdtisteps and higher
stability. The solver's matrix operations are impéated along the
lines of [13], exploiting new hardware capabilitiesreduce the
number of passes needed for reduction and mukidic
operations.

In the context of garment simulation, the work oddRguez-
Navarro and Susin [26] is the first to consider caratational
Finite Element Method approach to simulation on tBBU.

Based on the work by Etzmuss et al. [7] they imgetra garment
simulator for virtual avatars, using implicit intagion and GPU
based collision detection. Their reported speedwgr ocan

equivalent CPU implementation lies in an order aiagnitude.

In the work of Comas et al. [5], the CUDA API isedsto

implement soft tissue simulation based on the Tlaigorithm for

nonlinear dynamic finite elements. The work is iempénted as
part of the open source SOFA medical simulatioméaork.

TLED had had previously been implemented usingaalshbased
approach [29][30]. The authors describe a two stgetion to

avoid the inherent difficulties of creating a fulljunctional

scattered write solution. First element stressescanverted to
nodal force contributions. In a second stage faheaode the
contributions by the various elements it's attactoedre gathered
to obtain the final nodal forces. Given the useuntructured
meshes, memory access is fairly random. Textureaneis used
for global memory access, which - due to a texsumziche -
should reduce the performance hit usually assatiate

uncoalesced reads. The authors use page-lockedriemsory to

transfer data between CPU and GPU.

Li et al. [15] present a hybrid CPU-GPU approach the
simulation of clothing. Using a mass-spring apphodo the
simulation of clothing, they employ a spatial swiglon approach
to collision detection. All states are handled ba GPU via the
CUDA API. The authors find however that the hanglliof

deformation constraints as presented by [24] is emtime-
consuming when performed on the GPU than whenish@tone
on the CPU. They therefore handle this stage onCtRg, once
the GPU force computation has finished. To hide esarh the
costs associated with CPU/GPU data transfer, thigtyalbo

asynchronously launch kernels is used. In theiluation they
note a performance improvement in the order of gnitade of
their hybrid approach, over a CPU only solutionGRU only
solution falls somewhere in between.

4. GPU OPTIMIZATION

In this section we discuss our GPU optimized fraowwfor the

physical simulation of cloth and garments. The ngoal of this

framework, as should have become apparent, is toes

improved performance with respect to our VTO platfoAs such
we desire ideally real-time performance in a fullynamic

simulator, which is able to accurately simulate thenlinear

behavior of fabrics. We will focus on the simulatiitself, but of

course there are additional requirements to oundwork such as
the seamless integration with our existing data a@odtent

pipeline, as well as ease of use for applicatioreltpers through
a clean API.

4.1 The framework

Our simulation framework, written in C++, consisfsa templated
set of objects which allow for instantiations based floating
point precision (single or double) and backendh&itCPU or
GPU). The GPU implementation which we’'ll discussrehés
based on the CUDA API. With regards to the meclanand
numerical components of our framework, an abstrant
simplified overview of their organization is given Figure 4.
This overview ignores all other components sucthase related
to I/0, rendering and other functionalities.

The GarmentObject is the main object within ounfesvork and
is what controls the full simulation cycle. It helthe garment’s



mechanical state (positions, velocities, masses), &ne or more
Elements, a Solver and possibly an external FoeteéRfor such

effects as wind and drag.) It is this GarmentObyelich is used
by the application developer and which hides a#l tlecessary
functionality behind an easy to use APIl. The maimputational

components are listed on the right side of the rdiagand

effectively hold the CUDA kernels launched for tt@mputation

of forces, force Jacobians (Elements) and numeiitabration

(Solvers).

"= Solver [

Figure 4. A structural overview of our GPU simulation
framework

4.1.1 The Solvers

The responsibility of a solver is to update a sy&testate from its
current frame/time to the next. As such, once imebkit will
request a GarmentObject’'s Elements to compute dheed and
possibly force Jacobians based on a specific shateframework
supports two solvers; an explicit Runge-Kutta-Fehdpsolver, as
well as an implicit Euler solver. In practice, timeplicit solver is
our solver of choice. The explicit solver is mainserved for
those cases where we need the associated highaegaurwhen
we want to establish a ground truth.

The explicit solver has a fairly straight-forwardrusture. Its
computation consists of dense vector operationsatiodis for a
trivial implementation.

For the implicit solver we take a somewhat différapproach

than the methods described in section 3.1. For amedon’t

explicitly compute and store a sparse matrix. bdtee compute
the sparse-matrix/vector product on the fly by daig the

responsibility to each individual element, be ittrdangular

element or a spring. Taking note of the fact thetheelement’s
contribution to the overall Jacobian matrix canftienulated as
the outer producta(b") of two vectors, its multiplication with an
arbitrary input vectorg b")v can be rewritten ta(b’ v). This is a

dot-product and a scalar product, rather than aenommplex

matrix/vector product.

Due to this structure, the computation of the spanatrix/vector
product uses two CUDA kernels. The first kernel pates the
product of an element’s Jacobian contributions wlith relevant
parts of the vector, while a second kernel sumshallindividual
contributions into the final dense result vector.

As such, we avoid the need for the setup or updai sparse
matrix data structure. What is more, this compatstl structure
in the end closely resembles the computationalcstra for
element forces as we will come to discuss, makomgputational
organization fairly straight-forward.

4.1.2 The Elements

To evaluate the tensile and bending behavior —thedssociated
forces — of the garments we simulate, we integrdisge different
element types. Each element maintains its own Speopology
information and other (possibly pre-computed) pdéement
values.

In line with [CTOO08] we have found that an elemeeintric

approach using two kernels for force computatiorrelatively

straight-forward to implement and allows for goostfprmance.
As was discussed for our implicit solver, the cotation of

forces takes two steps. A first kernel computesftinees for the
nodes in each triangular element or for the indigidspring. A

second kernel then combines all the forces for eautte by
summing the contributions of each attached elen¥nis second
kernel relies on a lookup table which for each nstiges which
elements it attaches to. This same lookup tabddsis used by our
earlier discussed implementation of the impliciveo.

Memory access with regards to the second kern¢lalso with
regards to the state values accessed in the #rsiekis largely
unstructured. In an attempt to alleviate most @f prerformance
penalty involved in unstructured memory reads uSpA, we
bind all the arrays accessed in an unstructurednerato a
texture. Through texture fetching and the assodiataching
available, we find that we still obtain good penfiance.

Figure 5. Our framework evaluates tensile stiffnesbased on a
triangular element (left) and bending stiffness basd on a
“basic shell triangle” (right).

The tensile element is based on the mass-lumpéditipagystem
as described in [33]. The triangular element (Fégbir left), has a
fairly straight-forward expression of the elememtces and force
Jacobian. As such it is straight-forward to implemevhile it still
allows us to simulate the highly nonlinear behawibfabrics.

Bending stiffness within fabrics is often low — esjally
compared to tensile stiffness — but its accurateluagion is
necessary for realistic simulation results relatedfolds and
wrinkles. To evaluate bending stiffness we supped element
types; a so-called “basic shell triangle” (Figureight) as well as
a straight-forward spring. In the former case begditiffness is
evaluated through the positioning of the 3 outede®o with
respect to the inner triangle, while in the lattase two nodes are
connected by a spring across the shared edge dfriangles. In
practice we usually resort to the basic shell giarelement for
our bending behavior.

To model material behavior we support non-lineaaiststress
curves. These curves are implemented as piecewigsc c
polynomial splines whose constants are easily dtawithin float4



elements. While splines of a higher degree woulgdssible, we
find in practice this is not necessary. The evadmabf both the
stress and stress-derivative has a simple structurd is
implemented as a straight-forward device functionr platform
allows for both a global material behavior as wasdl different
materials per triangular or spring element to allearying
material behavior across a fabric.

4.2 Results and performance

To evaluate the performance of our framework, weehaken a
1n? square piece of fabric which is horizontally cladmt its top
edge. The fabric consists of between 200 and 28kdies. We
used an implicit Euler solver fixed at 16 Conjug&eadient
iterations with a fixed time step of 0.01 seconds.

We tested two scenarios as illustrated in Figurd @abric with
only tensile stiffness and a fabric with both témsind a high
bending stiffness.

Figure 6. Simulation of a 5000 element 1ffabric. Tensile only
(left) and tensile + bending (right).

Performance was evaluated on a NVIDIA GeForce GBX,4
which is a GPU based on the Fermi architecture. tiftings
reported are the exact simulation times. Data feanisetween
CPU and GPU is not taken into account.

All performance tests simulated cloths of varyinégengent

densities through a simulation cycle of severalutated seconds.

Timing results were then averaged for 100 timestepsl full
simulated second.

2000

1800

1500 /
1400

200 200 1800 3200 5000 7200 2300 12800 15200 20000

Figure 7. Tensile: average time taken in ms for 100mesteps

4.2.1 Tensile Element

When considering the scenario with only tensildfretss as
various fabric resolutions, we get a performanceplr as
illustrated in Figure 7. Even at 20k elements, vehiave a
performance of about 55 time steps per second.

Comparing this to the performance results menticinef83] is

somewhat difficult since no exact hardware detaile listed.
However, where they report the ability to iterateeo 17.5k
elements per second, a conservative estimate lefist an order
of magnitude improvement seems reasonable.

If we evaluate the computation time spent per gidar element,
we get a performance graph as illustrated in Figuré/hat this

graph illustrates is that the performance startactueve its peak
from around 5000 elements and higher. Though theteshape of
this graph depends on the hardware used, its glshape is
explained by the fact that only at a significantoamt of elements
a reasonable level of occupancy is achieved ande sofrthe

latencies associated with memory access are hidden.

200 800 1800 3200 5000 7200 9800 12800 16200 20000

Figure 8. Simulation time per triangular element pe 100
iterations in ms

Overall the simulation performance seems to keefairfy well
with increasing mesh densities. Pushing our sirariato the
limit, we see that in the scenario mentioned weathieve 2 time
steps per second for a 1million element cloth. éligh the 16 CG
iterations are then by no means enough for praperlation.

4.2.2 Tensile and Bending Element

When adding bending elements into the mix, the asitn

becomes slightly different. Of course the compotei

complexity increases which has an effect on perdowe. As
shown in Figure 9, the performance at 20k elementstill 37

time steps per second. Performance behavior soegtimcomes
slightly irregular. With varying amounts of elemgntve see
certain repeatable performance sweet spots suttte asidden dip
at 7.2k elements.

Given the particular bending element as shown guifei 5 (right)

there is relatively more irregular memory accessdmputation
than with the tensile elements alone. There arefample twice
as many nodal values to retrieve per element. Whk

computation itself remaining fairly simple, it beces more
difficult to find a good balance between memoryesses and
computation.
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Figure 9. Tensile + Bending: average time taken fot00
timesteps

Overall though the per-element performance (Fidefollows a
similar pattern as in the tensile-only case. Opitiperformance
starts to be achieved slightly later, from 7.2kvedats and higher.
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Figure 10. Simulation time per tensile+bending eleemt per
100 iterations in ms

While material nonlinearities are evaluated throogh piecewise
polynomial splines, we do find that in their
implementation performance is not ideal due to ipbssranch
divergence between threads.

5. CONCLUSION

With our framework in place, we have found thatea®a achieve
a considerable speedup compared to our CPU basedbsbns.
As such, the GPU optimization of our garment sirtiaies seems
to be a valuable avenue to pursue. Real-time pudoce is
promising.

Because the performance scales well with increasimgsh
density, we also find that the framework might laéuable in non-
real-time scenarios with high garment mesh demssitie

Future work will focus on the deeper evaluation azhieved
performance and comparison to other platforms, et as the
improvement of our framework with respect to sorh¢he noted
performance bottlenecks.

Further avenues for investigation are the integratf collision
detection and handling, either based on a full GBlution or by
means of a hybrid CPU-GPU alternative.
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