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ABSTRACT

Markerless human body motion capture promises to remove markers from capture studios, thus
simplifying its diverse application fields, from life science to virtual reality. This comprehensive
review examines recent advances in real-time markerless motion capture systems from 2020 to
2024, focusing on real-time multi-view, multi-person tracking solutions. Recent advancements,
particularly driven by neural network-based pose estimation, have enabled real-time tracking with
minimal latency, achieving at least 25 frames per second. Through systematic analysis, we evaluate
these methods based on three key metrics: accuracy in pose reconstruction, end-to-end latency, and
computational efficiency. Special attention is given to how architectural decisions impact system
scalability regarding the number of camera viewpoints and tracked individuals. While current methods
show promise for applications like sports analysis and virtual reality, challenges remain in achieving
optimal performance across all metrics. Through systematic analysis of leading real-time pipelines,
we identify key technical advances and persistent challenges. This synthesis provides critical insights
for researchers and practitioners working to develop more robust markerless motion capture systems,
while outlining important directions for future research.
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1 Introduction

Recent advances in markerless motion capture technology have enabled real-time tracking of multiple people using
only calibrated cameras. This capability is transforming applications ranging from virtual reality and sports analysis to
healthcare and robotics, where capturing group interactions is essential.

While traditional marker-based systems require complex setups with retroreflective markers and controlled lighting
conditions, markerless approaches promise simpler deployment using standard cameras. The integration of modern
Deep Learning techniques, particularly Convolutional Neural Networks (CNNs) running on GPUs, has made markerless
systems robust enough for real-world scenarios.

Our review focuses specifically on multi-view markerless methods that can: (1) track multiple people simultaneously,
(2) use multiple cameras as input, (3) operate in real-time, at least 25fps (processing latency under 40ms), (4) handle
occlusions caused by interactions between person, and (5) track a full set of body keypoints (at least 10 per person).

These requirements are like traditional motion-capture setups, and present specific technical challenges. Multi-person
tracking introduces occlusions and identity association problems. Real-time operation constrains the available processing
budget. Tracking numerous keypoints per person creates a computationally complex multi-view matching problem that
is NP-hard [183].

The key contributions of this review are: (1) a comprehensive analysis of markerless motion capture evolution, from
early multi-view approaches to current real-time methods, (2) a systematic evaluation of state-of-the-art real-time
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Figure 1: Timeline of the early real-time markerless methods. M'V denotes multi-view methods, M[P denotes multi-
person methods, with the g subscript for real-time multi-view MV gt or real-time multi-person PV gy
methods, @8 indicates the number of camera views, & indicates the number of detected persons.

multi-view multi-person systems, including detailed accuracy and latency benchmarks, and (3) an in-depth discussion
of current limitations and promising future research directions.

The review is organized as follows: Section §2 presents a historical perspective of the field, covering both early methods
(§2.1) and recent deep learning approaches (§2.2), along with previous surveys (§2.3). Section §3 defines the markerless
pose estimation problem, evaluation metrics, and benchmark datasets. Section §4 analyzes current leading approaches,
their architectures, and limitations. Through this structure, we provide researchers and practitioners with a thorough
understanding of this rapidly evolving field.

2 Comprehensive Survey of Literature

This section presents a structured analysis of markerless motion capture, a field that has generated thousands of
research articles and numerous reviews. We organize our discussion chronologically and thematically into three key
periods: §2.1 Early Foundations 1985-2012: we examine pioneering approaches that established core principles and
algorithms, focusing on multi-view reconstruction techniques, early real-time and multi-person methods, §2.2 Modern
Real-time Methods 2013-Present: we analyze the transformation brought by deep learning, highlighting CNN-based
pose estimation architectures, real-time optimization and multi-person tracking innovations, §2.3Survey Analysis and
Synthesis: we provide a systematic comparison of previous review works that present the evolution of key technical
approaches and identify remaining challenges.

Throughout this section, we maintain focus on systems meeting our core requirements: real-time processing (>25 fps),
multi-view capture, and multi-person tracking capabilities. This structured chronological and thematic organization
aims to provide insight into both the historical evolution and the key technical innovations that enabled today’s real-time
markerless systems.

2.1 Early foundations (1985-2012)

Markerless motion capture emerged in 1985 with Lee and Chen [82], followed by multi-view approaches in 1995 [49]
that achieved 10fps tracking rates through advances in cameras and algorithms. While early works claimed "real-time"
performance, we distinguish between "fast" (10-24fps) and truly "real-time" (25fps) methods. The field progressed
rapidly through improved computing power, GPU acceleration, optimized algorithms, and large datasets. Figure 1
presents a timeline of landmark early methods, selected based on their pioneering technical contributions and lasting
impact on the field. Each entry represents the first publication to achieve a specific performance milestone in terms of
speed, accuracy, or multi-person tracking capability.

2.1.1 Early real-time multi-view markerless

Multi-view systems enabled accurate 3D position estimation through geometric triangulation, avoiding single-view
depth ambiguities. Gavrila and Davis [49] pioneered real-time 3D limb detection with 3 synchronized cameras by
matching geometric primitives (head, torso, arms) to multi-view contours, establishing a paradigm for future multi-view
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methods despite computational demands. In 1996, Azarbayejani and Pentland [6] achieved 20-30fps head and hand
tracking using stereo cameras and 2D Gaussian blob modeling. Running on dual Silicon Graphics workstations, it
achieved 1.5cm Mean Position Error §3.2.2 and included self-calibration. Their Pfinder extension [164] enabled 10fps
monocular tracking of head, hands and feet. Early multi-camera systems focused on improving framerates with more
cameras. In 2000, Yonemoto et al. [179] achieved 5fps with 5 cameras by detecting head, hands and feet as bounding
boxes and fitting a 13-joint skeleton. The system used color blob tracking and epipolar triangulation, distributed across
a 12-machine cluster for parallel processing. Though, the 200ms latency limited real-world applications. By 2004, Date
et al. [35] reached 15fps with nine 640x480 cameras. Their method detected key body parts and fit a more complex
16-joint skeleton using inverse kinematics, but the background subtraction requirement restricted use to controlled
environments.

In 2008, Caillette et al. [19] pioneered volumetric voxel representation for multi-view tracking. Their method recon-
structed body visual hulls with gaussian blob tracking for temporal consistency, and avoiding background subtraction.
Using four 320x240 cameras, it achieved 10fps on a single CPU - a milestone for volumetric reconstruction.

2.1.2 Early real-time multi-person markerless - pictorial structures

Multi-person tracking emerged in 2001 with Isard and MacCormick [67]’s particle filters for segmentation and
cylindrical body models running at 15fps (160x120), identifying key challenges: occlusion handling §3.1.3, identity
preservation, and re-identification after disappearance. In 2003, pictorial structures [ 13] detected limbs via parallel
contrast lines. Ramanan et al. [114] improved this with Canny edge detection, multiclass pictorial classifiers and
limb patch learning. The system clustered and matched limbs iteratively to identify distinct people, resulting in linear
computational scaling with the number of people. In 2007, Wu and Nevatia [165] introduced bottom-up part grouping
§3.1.1 using IoU (1fps), later extended to 3D [16] §2.2.2. The Kinect [129] achieved 200fps tracking (5ms latency) on
Xbox 360 GPU using depth sensing.

2.2 Modern Deep Learning-based real-time methods (2013-present)

Deep Learning revolutionized pose estimation with DeepPose [145] in 2013. It introduced direct joint coordinate
regression using convolutional neural networks and demonstrated successful transfer learning from AlexNet [78]. The
network architecture used seven layers of convolutions and rectified linear units (ReLU), followed by a cascade of
refinement stages that iteratively improved joint predictions. Despite not being real-time (100ms on 12 CPU cores), its
superior accuracy and speed established Deep Learning as the new paradigm for pose estimation.

2.2.1 Real-time multi-person markerless methods

Multi-person pose estimation evolved into two approaches: top-down (detect persons then estimate poses) and bottom-
up (detect keypoints then group into poses), each with different trade-offs between accuracy, speed, and scalability.
Top-down developments include Mask R-CNN [59] extending Faster R-CNN [118] with keypoint prediction, and
RMPE [44] with Symmetric Spatial Transformer Network. AlphaPose [45] added hierarchical feature pyramids
and pose-guided proposals, reaching 25fps (2080Ti) but scaling linearly with persons. For bottom-up, Associative
Embedding [103] pioneered single-stage keypoint detection with learned grouping embeddings, achieving 6fps (V100)
[77] using a stacked hourglass network with skip connections to preserve both high-resolution spatial details and
semantic information.

OpenPose [20] pioneered real-time multi-person pose estimation using a two-branch architecture with keypoint heatmaps
and Part Affinity Fields (PAFs) for efficient skeleton assembly. Using VGG-19 [134] backbone, it achieved 8.8fps
on GTX-1080 Ti when trained on COCO [87] and CMU Panoptic [72]. The improved version [21] reached 28fps
through optimizations, while its temporal extension STAF [ 12] maintained 27fps with temporal tracking. PifPaf [76]
introduced Part Intensity Fields and PAFs with a ResNet50 [58] backbone, achieving 14fps on V100 GPU after temporal
tracking [77]. The same year, FastPose [181] unified detection, pose estimation and re-identification using ResNetI8
[58] with parallel heads, achieving 29.4fps (Titan X) through shared computation.

ROMP [140] introduced single-stage direct regression of SMPL [92] §3.1.2 parameters using HRNet [139, 30] and
transformer-based regression. Its parallelized approach avoided iterative optimization, achieving 30fps on 1070Ti GPU
with 60.5mm MPJPE on 3DPW §3.2.1 and constant inference time regardless of person count.

Finally, single-stage methods based on YOLO [116] proposed significant speed improvements by treating keypoint
detection as a direct regression problem. Unlike two-stage detectors that first propose regions then classify them, YOLO
divides the image into a grid and directly predicts bounding boxes and keypoint coordinates in a single forward pass.
YOLOv7 [155] combined an efficient backbone with PANet-based multi-scale fusion and parallel keypoint prediction
branches, achieving 56fps on an RTX3090 GPU.
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Figure 2: Timeline of previous markerless surveys.
#nb indicates the number of methods in the review, MV denotes survey reporting multi-view methods, M'P
denotes survey reporting multi-person methods, with the g subscript for real-time multi-view M Vgt or
real-time multi-person PV gt methods.

2.2.2 Real-time monocular 2D to 3D pose estimation

VNect [95] pioneered real-time single-person 3D pose estimation with a two-branch CNN (ResNet50 backbone) for 2D
heatmaps and 3D regression, achieving 30fps on GTX 1080 through kinematic fitting. Mehta et al. [96] extended this to
multi-person with unified heatmaps, PAFs and 3D regression. XNect [97] later achieved 30fps multi-person tracking
through lightweight detection, efficient 3D regression, and temporal fitting, with person-count invariant performance.

The 3D pictorial structures approach [16, 10] modeled bodies as probabilistic graphs with Conditional Random Fields
(CRF) constraints. Despite temporal extensions [ 1], its quadratic complexity limited real-time applications to 1fps for
3 persons.

Mvpose [39] combined Cascaded Pyramid Network [26] with epipolar geometry and re-ID, achieving 10% higher
PCP3D on Campus/Shelf at 10fps (4 persons, 5 views) on 1080Ti.

Recent advances include Zhou et al. [189]’s two-stage framework using pose-guided transformers and adaptive feature
selection, achieving 28.6mm MPJPE on Human3.6M with strong generalization (68.9mm on MPI-INF-3DHP). Cai
et al. [17]’s diffusion method decomposed poses into bone length/direction, achieving 39.0mm MPJPE on Human3.6M,
outperforming prior methods [156, 51] by 10.0% and 1.3% respectively, though computational costs limit real-time
multi-person applications.

2.2.3 Pose Estimation from IMUs

While this review focuses on camera-based markerless capture, IMUs provide direct limb orientation measurement
through acceleration and angular velocity sensors. von Marcard et al. [150]’s SIP achieved 4cm error using 6-15 IMUs
with SMPL model optimization, though not real-time at 450ms/frame. Huang et al. [65]’s Deep Inertial Poser used 6
IMUs with BIRNN and SMPL to achieve 6cm MPJPE at 29fps, but required 25 past and 5 future frames, exceeding
real-time latency criteria. Hybrid IMU-video approaches emerged to combine complementary strengths. von Marcard
etal. [151]’s Video Inertial Poser fused data by optimizing SMPL pose, achieving 26.3mm MPJPE on 3DPW with 13
IMUs + video, or 39.6mm with 6 IMUs + video. The authors introduced the 3DPW dataset for multi-person IMU-video
evaluation.

Zhang et al. [185] proposed real-time fusion through geometric optimization, achieving 24.6mm MPJPE on Total
Capture at 150ms/frame. While IMU-camera fusion handles occlusions well, challenges remain with sensor drift,
magnetic interference, calibration complexity, and the impracticality of requiring multiple IMUs per person.
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2.3 Survey analysis and synthesis

Figure 2 provides a chronological overview of major markerless motion capture surveys, highlighting key developments
in the field. While these reviews documented important methodological advances, most did not emphasize latency
considerations - a gap we address by focusing on real-time applications.

2.3.1 1994 to 2012: pre-Deep Learning markerless era

Early reviews by Aggarwal et al. [2], Aggarwal and Cai [ 1] documented the transition to markerless approaches using
color histograms and optical flow. Key innovations included the first 14-joint skeleton model [29] and real-time stereo
tracking [6] §2.1.1. Cédras and Shah [22] and Aggarwal et al. [3] established core technical challenges. Wang et al.
[159] analyzed 164 papers, defining key pipeline tasks: detection, pose estimation, and action recognition. Moeslund
etal. [101] added Initialization, feature-based Pose estimation, Tracking, and Recognition, documenting the first neural
network application [121].

Poppe [110] introduced top-down and bottom-up paradigms (§3.1.1). Ji and Liu [69] focused on view-invariant
representations, noting one fast multi-view method [19] §2.1.1.

In 2012, Holte et al. [62] compared body representations and evaluated 18 methods on INRIA IXMAS [162]. Notable
real-time achievements included Date et al. [35] §2.1.1 at 15fps, Dahmane and Meunier [34] at 16fps for detection,
and Caillette et al. [19] §2.1.1 at 10fps with multi-view tracking. These optimizations laid the groundwork for modern
real-time systems.

2.3.2 2012 to 2018: Deep Learning advances

Deep learning emerged as the dominant paradigm during 2012-2018. Liu et al. [91] first systematically compared
traditional and deep learning approaches on LSP [71] and FLIC [124] datasets. Early CNN-based methods [25, 143]
demonstrated 5-10% accuracy gains over hand-crafted features, effectively establishing deep learning as the new
state-of-the-art. Sarafianos et al. [125] analyzed 152 methods and highlighted 3 key datasets: Human3.6M [66] §3.2.1,
CMU Panoptic [72] §3.2.1, and SynPose300 §3.2.1. The review introduced standardized evaluation using Mean Per
Joint Position Error (MPJPE) §3.2.2 to compare four markerless methods [174, 190]. The 3D pictorial structures
representation [16] §2.2.2 emerged as foundational, while Kinect [129] §2.1.2 demonstrated commercial viability.

By 2018, Colyer et al. [32] evaluated biomechanics methods using HumanEva dataset [132]. Two key innovations
emerged: OpenPose [20] §2.2.1 for real-time multi-person detection and SMPL [14] §3.1.2 parametric body model.
Comparing 8 methods (2010-2016) using MPJPE on HumanEva, the authors found that markerless systems had not yet
achieved the precision needed for sports and rehabilitation applications, noting challenges in marker-based validation
due to body shape variations and marker interference.

2.3.3 2018 to 2023: Modern multi-view 3D pose estimation reviews

Our review focuses on real-time multi-view multi-person methods as alternatives to marker-based systems. Despite less
research activity in multi-view compared to monocular approaches [52, 27, 23, 90, 40], the trend shows that achieving
marker-based quality with low latency might be possible with further research.

Zheng et al. [186]’s analysis of 242 papers highlighted EpipolarPose [74] §4.4 with epipolar constraints, VoxelPose
[147] §4.5.1°s volumetric learning, real-time methods [117, 24] §4.2, and adversarial vulnerabilities [88, 127] §6.1.

Desmarais et al. [37] and documented MPJPE improvements from 100mm to under 20mm in a decade, highlighting
Epipolar Transformers [60] §4.5.3 and temporal tracking [63, 154, 89]. The same year, Wang et al. [158] analyzed
open-source implementations, highlighting how code sharing has accelerated progress since 2016 §6.1. Their evaluation
identified Mvpose [39] as achieving an optimal accuracy-speed trade-off at 10fps.

Lam et al. [81] proposed a screened literature search of 65 papers on clinical applications. While Kinect [129]
§2.1.2 dominated medical use, smartphone-based setups gained traction due to simplified setup, hygiene benefits from
markerless tracking, and lower costs. Markerless methods are simpler to use, as they do not need the time-consuming
marker placement procedure, and therefore avoid all the hygiene constraints associated with contact with the patient’s
body.

Recent advances are highlighted in Zheng et al. [187]’s review of 30 novel methods, covering multi-view fusion (MvP
[160] §4.5.3), temporal modeling (4D Association Graph [183]), and volumetric processing (Faster-VoxelPose [176]).
[104]’s evaluation of 9 methods on CMU Panoptic [72] §3.2.1 showed Tessetrack [115] §4.5.1 achieving best-in-class
performance (MPJPE 7.3mm, AP 99.1% §3.2.2, §3.2.2). While thorough on accuracy metrics, this survey did not focus
on computational efficiency and real-time performance - key aspects we address.
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3 Problem statement

Real-time markerless pose estimation systems are characterized by their ability to track multiple subjects across multiple
views without physical markers. This section defines the core problem and scope of the research within this domain.

3.1 Definition of a real-time markerless pose estimation method

From multi-view camera inputs, the task is to detect and track persons while predicting their full-body pose as joint
coordinates or 3D meshes. The method should achieve an MPJPE under 10mm with latency below 40ms (25fps).
While less precise than marker-based methods (250fps, MPJPE < 2mm §3.2.2 [98]), these specifications represent an
achievable target that balances the inherent trade-off between accuracy and computational latency.

3.1.1 Top-down vs bottom-up approaches

Multi-person pose estimation follows two paradigms introduced by Poppe [110] and refined by Chen et al. [27]: fop-
down methods detect person boxes then estimate individual poses, achieving higher precision through cropped regions
but struggling with occlusions; bottom-up methods detect and group keypoints directly, providing better robustness
during close interactions by leveraging full scene context §2.2.1.

3.1.2 Human body representation and model

In 1997, Aggarwal and Cai [] introduced the different human body representations that a markerless method can
output: a simplified joint-stick skeleton, the 2D contour of the human body, or a simplified volumetric limb-cylinders
body skeleton. Since then, the body representation has evolved into three main categories: keypoint-based, part-based
volumetric, and parametric models.

Keypoint-based representations This approach represents the body as 3D keypoint coordinates connected to form
an anatomical skeleton. It enables efficient storage, processing and 3D triangulation from multi-view 2D coordinates.
For multi-person scenes, methods like Associative Embedding [103] §2.2.1 and Part Affinity Fields [21] §2.2.1 handle
keypoint association. The keypoint definitions come from training datasets. For exemple, Hidalgo et al. [61] entend
COCO §3.2.1 to include feet keypoints. Synthetic data also enables flexible keypoint definitions, detailed in Section
§3.2.1.

3D parametric human models Statistical models represent body shape and pose variation. The widely-used SMPL
model [92, 14] uses a deformable mesh controlled by shape (3, 10D), pose (6, 72D for 24 joints), and Linear Blend
Skinning, trained on 3000 CAESAR scans [119]. Extensions include hand modeling (SMPL+H/MANO [120]), face
and hands (SMPL-X [107]), and STAR [105] which reduces parameters by 75% while maintaining quality through
sparse decomposition. VIBE [75] achieved 25fps for 5 persons (RTX2080Ti), while ROMP [140] reached 30fps for
15 persons (GTX1070Ti). GHUM [170], trained on 60,000+ scans, uses variational autoencoders with 17x fewer
parameters than SMPL while maintaining quality. However, these models struggle with extreme poses and multi-person
computational costs. While offline methods use SMPL for multi-view multi-person tracking [85, 180], real-time
systems like spatiotemporal 4D association graph [183] use it only for refinement, balancing detailed modeling with
performance constraints.

3.1.3 Constraints of a real-time markerless setup

Real-time systems must process frames within 40ms (25fps), including per-view pose estimation and cross-view
reconstruction. We discuss the main issues that impact the development of real-time methods.

Acquisition issues Several acquisition issues can limit the accuracy of the pose estimation: image noise, motion blur,
and various occlusions (object, self, multi-person). These can cause missed detections, false positives, or incorrect limb
associations, impacting the accuracy of 2D pose estimation and subsequent cross-view reconstruction. The markerless
method will need to robustly overcome these hurdles to output accurate per-view 2D poses or 2D features, so that the
cross-view solving might succeed.

Occlusion handling Occlusion is a common challenge in multi-person motion capture that modern methods address
through several strategies:

* Multi-view redundancy: VoxelPose [147] §4.5.1 reconstructs occluded parts through volumetric feature fusion
across multiple views.
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* Part association: OpenPose [21] §2.2.1 uses Part Affinity Fields and Associative Embedding [103] §2.2.1
learns persistent pose embeddings.

o Temporal modeling: 4D Association Graph [183] §4.3 tracks poses across frames.

* Learning-based completion: TEMPO [31] §4.5.1 predicts occluded joints using temporal priors learned from
CMU Panoptic [72] §3.2.1.

Multi-view redundancy provides reliable handling but increases computation, whereas learning methods work with
fewer views but face accuracy and domain adaptation challenges §3.1.3 for novel environments and motions.

Latency constraints Real-time markerless systems employ several strategies to minimize latency: Lightweight
architectures like MobileNet [64] and EfficientNet [141] use depth-wise separable convolutions for faster inference.
HRNet [139, 30] maintains accuracy via parallel multi-resolution streams. Single-stage methods like ROMP [140]
perform direct 3D pose regression, while feature sharing approaches like XNect [97] reduce redundant computation
across stages. Early rejection filtering [21] and multi-GPU parallelization [97] further reduce latency, though the
latter increases system complexity. Top-down methods scale linearly with subject count, while bottom-up approaches
maintain more consistent latency. Cross-view matching adds minimal overhead when using efficient algorithms. Figure
8 shows how different methods scale with scene complexity. While ideal systems would maintain constant processing
time, practical implementations must balance optimization strategies based on application priorities.

Computational constraint Real-time methods require modern GPUs for inference [97, 140], with multi-view systems
often needing multiple GPUs to parallelize per-view processing. While commercial marker-based setups use hundreds
of cameras, markerless systems remain limited in capture volume. The largest reported markerless setup, VoxelTrack
[182] §4.5.1, achieved 15fps with five cameras in a 10 x 10 x 4 meters volume.

Dataset curation Large-scale dataset annotation is resource intensive - the COCO dataset [87] §3.2.1 required 19
minutes per image for 328,000 images. To address imperfect human annotations §6.1, the CMU Panoptic dataset
[72] §3.2.1 introduced multi-view bootstrapping using 480 cameras and pose estimation from [161]. Their iterative
bootstrapping approach [133] improved both dataset quality and model performance through repeated detection-
annotation-retraining cycles, achieving state-of-the-art results after three iterations. This technique generalizes to any
multi-view dataset with occluded keypoints or small objects.

Domain adaptation and cross-dataset generalization Learning-based markerless methods face challenges in
generalizing across different datasets and domains, particularly with varied camera viewpoints, lighting, body shapes,
clothing, and environmental contexts (indoor vs outdoor, controlled vs in-the-wild). Most methods currently perform
best when trained or fine-tuned on the target scene and camera layout.

Several approaches have been proposed to improve cross-dataset generalization: (1) using robust off-the-shelf 2D
pose estimators trained on large datasets like COCO §3.2.1, (2) multi-domain training with dataset mixing [53], (3)
domain-invariant feature learning [171], (4) data augmentation with random perturbations [157], (5) synthetic-to-real
domain adaptation [83].

Deng et al. [36] demonstrated domain adaptation that builds upon VoxelPose [147] using adversarial training from a
pre-trained model on CMU Panoptic §3.2.1. It achieving 6.9% PCP3D §3.2.2 improvement on the Campus dataset
[10] and 2.7% on Shelf compared to the pre-trained model. While these techniques help bridge domain gaps between
controlled and real-world environments, robust generalization remains challenging.

Due to limited multi-view datasets, comprehensive cross-dataset evaluations are not standard in benchmarks, making
it difficult to assess generalization across different capture scenarios. Future work should prioritize developing
standardized cross-dataset evaluation protocols.

3.2 Comparison criteria: body representation and dataset

Most markerless methods represent the human body as a joints-limbs kinematic skeleton, with OpenPose §2.2.1 and
Faster-VoxelPose [176] §4.5.1 being leading examples for monocular and multi-view estimation respectively. No
real-time multi-view method currently regresses volumetric bodies. Key datasets include MPI-INF-3DHP [94], COCO
[87], Human3.6M [66] and CMU Panoptic [72]. For fair comparison, we benchmark methods on CMU Panoptic §3.2.1.
Standard metrics include Percentage of Correct Keypoints (PCK) and Average Precision (AP) §3.2.2 for 2D pose, and
PCP §3.2.2 and MPJPE §3.2.2 for 3D pose. Building on Moeslund and Granum [100]’s criteria, we evaluate methods
on their latency in milliseconds, accuracy on CMU Panoptic (PCP3D, MPJPE), and the computational scalability to the
number of subjects and viewpoints. A detailed comparison of real-time methods is provided in §5.
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Dataset synth frames views persons motions annotations

Campus and Shelf [10] no 6k 4-5 3—-4 ~ 5 25 kpts

Panoptic Studio [72] no 1.5M 480 1-5 ~ 120 25 kpts

MuPoTS-3D [96] no 8k 8 1-5 20 14 kpts

4D association [183] no 15k 6 3—-4 ) 25 kpts from mocap
CHI3D [48] no 728k 4 2 120 25 kpts, GHUM, SMPL
MultiHuman [188] no 150 128 1-3 8 scans

ExPI [54, 55] no 30k 68 2 16 36 kpts from mocap
Hi4D [178] no 11k 8 2 100 25 kpts, SMPL, scans
HSPACE [9] yes 1M 1-5 1-16 100 33 kpts, GHUM §3.1.2
SynBody [175] yes 1.2M 5 1-4 1,187 190 kpts, SMPL §3.1.2

Table 1: Multi-view multi-person datasets. The synth column reports synthetically generated dataset. The persons
column reports the number of persons in a scene.

3.2.1 Datasets for training and evaluation

Markerless pose estimation relies on several key datasets. For 2D pose estimation, COCO [87] is the standard benchmark
with 107,000 annotated real-life images. CrowdPose [34] provides 20,000 images focused on occlusions and close
interactions. Al Challenger [166] extends COCO’s scope with 300,000 diverse annotated images.

Single view and multi-view datasets with IMUs Two datasets combine IMUs with video: 3DPW [151] and Total
Capture [146]. 3DPW uses smartphone video with 9-17 IMUs per person to track 1-2 subjects outdoors across 51,000
frames, providing synchronized video, IMU data, and SMPL [92] fits. Total Capture uses 8 calibrated cameras and 13
IMUs per person in a controlled setup, but only contains single-person sequences. Neither dataset is ideal for multi-view
multi-person scenarios - a dataset combining synchronized multi-view video and IMUs for multiple interacting subjects
remains needed.

Synthetically generated and annotated datasets SURREAL (Synthetic hUmans foR REAL) [148] generated 6M
frames with 145 body morphologies using SMPL [92] §3.1.2, with random backgrounds, lighting and camera positions.
As a synthetic dataset, each frame includes body part segmentation, depth maps, optical flow and surface normals. This
work proved the suitability of the synthetic generation of training datasets, which will be even more interesting for

multi-view annotations. Joint Track Auto [43] provided 460K images with 10M poses generated from the video game
Grand Theft Auto V.

Multi-view single-person datasets While many 2D pose datasets exist, multi-view datasets remain limited. For
comprehensive reviews of single-person datasets, see [9, 175]. Human3.6M [66] contains 3.6M marker-based 3D poses
from 4 viewpoints, capturing 11 subjects performing 17 actions in a motion capture studio, thus not representative of
real-life spaces.

SynPose300 [125] was the first synthetic multi-view dataset, featuring 8 subjects with varied body types captured from
3 viewpoints at 2 distances, each performing 3 motions against a white background.

Multi-view multi-person datasets Multi-view multi-person datasets remain limited, posing evaluation challenges.
Table 1 summarizes available datasets, which fall into three categories: marker-based, manually annotated, and synthetic.

The 4D association [183] and ExPI [54, 55] datasets used motion capture markers for ground-truth, while CMU
Panoptic §3.2.1 used multi-view boosting. MuPoTS-3D [96] used commercial markerless systems for 14-keypoint
skeleton annotation. While this enables precise quantitative evaluation, the markers themselves can affect natural motion
and appearance, potentially biasing results. Additionally, the studio environments may not reflect real-world conditions.
The Campus and Shelf datasets [10] serve as challenging benchmarks with 4-5 cameras and close interactions. CMU
Panoptic provides 1.5M poses across 521 viewpoints, making it invaluable for evaluating crowded scene handling.
Leading approaches like OpenPose [21] §2.2.1 and VoxelPose [147] §4.5.1 use it extensively. Recent datasets Fieraru
etal. [47] CHI3D and Yin et al. [177] Hi4D proposed close interactions between two persons, but with a limited number
of 4 views.

Synthetic datasets like HSPACE [9] and SynBody [175] use statistical body models (SMPL [92] §3.1.2 and GHUM
[170]) to generate diverse data with perfect annotations, enabling systematic evaluation of method robustness. However,
they require domain adaptation for real-world use.
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Looking forward, future datasets should combine real-world variety, dense camera coverage, complex interactions,
high-quality ground truth, and standardized evaluation protocols, while matching Panoptic’s scale and the diversity of
synthetic data.

3.2.2 Maetrics

Following the overview of the reference datasets, we focus on metrics used to quantitatively compare the accuracy of
multi-person multi-view markerless methods.

PCP3D: Percentage of Correct Part in 3D The PCP measures the limb correctness based on the distance between
the predicted limb keypoints and the ground truth limb keypoints. Burenius et al. [16] extends PCP to 3D by measuring
limb correctness based on distance between predicted and ground truth keypoints:

180 — snll + [Ién — enl|
2

where §,,, é, are ground truth start/end points, s,, e, are predictions, and the « threshold is typically 0.5 in recent
benchmarks. The PCP3D complements MPJPE but doesn’t penalize false positives or account for small limbs.

< allsn, —énll

MPJPE: Mean Per Joint Position Error The Mean Per Joint Position Error measures the Euclidean distance
between predicted and ground truth 3D joint positions. It is the reference metric for 3D pose estimation, and it can be
detailed for each keypoint type to find the granular accuracy of methods on different body parts. Ji and Liu [69] noticed
that the MPJPE error is not dependent on the person size in the frame. As such, a low MPJPE does not always indicate
an accurate pose estimation, whereas PCP3D is invariant to limb scaling.

N
1 *
MPJPE = ;:1 17 — J7 I,

where N is joint count, J; is ground truth, and J* is predicted position.

APg: Average Precision The 2D Average Precision metric initially defined in DeepCut [109] is extended to 3D by
considering a pose accurate if its MPJPE is under K millimeters. Common thresholds are A Ps5, A P59, AP1gg, and
APi50.

4 Architecture of a real-time multi-view multi-person markerless pose estimation method

This section analyzes three real-time markerless pipelines achieving sub-40ms latency: (1) Top-down approaches detect
person bounding boxes then estimate poses, trading computation scaling with person count for accuracy, (2) Bottom-up
methods detect and associate body parts in one pass with constant inference time, (3) end-to-end volumetric approaches
directly regress 3D poses from multi-view features using learnable voxel representations. Each architecture optimizes
different speed-accuracy-scalability trade-offs through neural network design.

4.1 A taxonomy of real-time multi-view multi-person markerless methods

We represent the three different architectures that achieved a real-time latency of less than 40ms in a unified taxonomy
in Figure 3. All methods take as input multi-view frames from a calibrated camera system, then use different methods
of feature extraction and 3D pose regression.

In Figure 4, we show a schema illustrating a subset of the different architectures discussed in this review, focusing on
the most common real-time multi-view pipelines. Together, these figures demonstrate the key steps and characteristics
of the three main architectures of current real-time methods. The figures do not include non-real-time architectures
previously reviewed in the paper, such as 3D pictorial structures §2.2.2 and parametric body mesh models [92, 170]
§3.1.2. Each pipeline processes multi-view inputs to output 3D poses while optimizing accuracy and latency with
different computational complexity scaling properties. For a comprehensive comparison of important multi-person
architectures reviewed in this paper in previous section §2, we include non-real-time and monocular methods in Table
2. The computational complexity of each key architecture regarding the number of people in the scene is shown,
with voxel-based methods currently being the most efficient with constant time complexity. However, the latency
performance between voxel-based and top-down methods is close. Table 4 will complete Table 2 with recent real-time
multi-view multi-person markerless methods evaluated on the Campus [10] benchmark.

9



A Comprehensive Review of Real-Time Multi-View Multi-Person Markerless Motion Capture

Input images
Multi-View MV
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§4.2 §4.3 §4.5
¥ ¥ v
Per-view per-person pose estimation Per-view 2D limbs association Volumetric projection
MYV 2D poses MYV 2D poses coarse 3D voxels features
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3D persons matching Cross-view 3D limbs matching 3D persons bbox detection
3D persons proposal 3D persons proposal fine voxels persons features
Body-level association part-level association body-level association
v v v
3D poses regression 3D poses regression 3D poses regression
3D E)ersons poses 3D persons poses 3D persons poses
§4.2 Mvpose [39] §4.3 4D association graph [183] §4.5 TEMPO [31]

Figure 3: Taxonomy of real-time multi-view multi-person markerless methods.
MYV denotes independent variables per-view.

4.2 Per-view top-down 2D poses detection then 3D pose regression

The per-view top-down architecture applies monocular pose estimation independently to each camera view before
fusing to 3D. The pipeline has three stages: (1) per-view 2D pose detection, (2) cross-view pose matching, (3) 3D pose
triangulation. We refer the reader to Figure 4a for a visual representation.

Mpvpose: Efficient Multi-View Pose Estimation Mvpose [39] introduced several algorithmic innovations: (1) two-
stage matching with epipolar geometry and appearance features, (2) RANSAC-based triangulation for outlier robustness,
(3) parallel pose detection. The mnethod achieves 20fps (4 persons, 5 views) on a GTX 1080Ti GPU, with latencies of
35ms/view for detection, 10ms matching, 10ms triangulation. On CMU Panoptic [72] §3.2.1, it achieves 83.30% 3D
PCP §3.2.2 and 105.63mm MPJPE (5 views, 5 persons) using [33].

Asynchronous Multi-View Processing Chen et al. [24] proposed an asynchronous processing approach that processes
views sequentially rather than in batch. The system uses a linear 3D motion model with timestamp-based penalties
to forecast joint positions, updating 3D poses incrementally as new 2D detections arrive. While matching Mvpose’s
accuracy [39] §2.2.2, it achieved 34 fps with 28 cameras and 16 persons. However, it had a latency of 300ms for the 3d
pose inference, but the method technically ran at 34 fps for 28 cameras with 16 persons in the scene. Authors measured
that the computational cost of this asynchronous approach scales linearly with camera count, making it suitable for
large camera arrays.

4.3 Per-view bottom-up 2D limb detection then 3D pose regression

Bottom-up approaches detect limbs independently in each view, then associate them across views to reconstruct 3D
poses. The main challenge is to correctly match corresponding limbs between views. We refer the reader to Figure 4b
for a visual representation of this architecture.

Stoll et al. [138] pioneered real-time tracking using 3D Gaussian color blobs with 58 joints, extending Pfinder [0]
§2.1.1. The 3D Gaussians projected efficiently to 2D circles for cross-view matching. Elhayek et al. [41] simplified this
to 25 joints and added a 13-joint CNN detector [143], matching the 3D pictorial structures’ accuracy [11] §2.2.2 at 1fps
on HumanEva [132].

Real-time multi-view multi-person architectures Schwarcz and Pollard [126] first proposed multi-view aggregation
of OpenPose detections, achieving 10% PCP3D improvement over 3D pictorial structures, but it required offline
processing due to full sequence graph optimization. In 2019, Kadkhodamohammadi and Padoy [73] developed a
real-time method combining OpenPose detection with cross-view multi-person 3D pose regression. The two-stage
design enabled independent optimization using specialized datasets. Their regression method required each person to
be visible in at least two views and used: (1) cross-view matching with a 20-pixel threshold, (2) CNN-based 3D pose
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Figure 4: Real-time multi-view multi-person markerless architectures with computational complexity scaling: (a)
Top-down O(n): higher precision, linear person scaling; (b) Bottom-up O(1)-O(log n): robust to occlusions,
sub-linear scaling; (c) Voxel-based O(1): optimal efficiency, constant scaling

reconstruction from matched 2D detections. Training on Human3.6M with injected noise achieved 4.7cm MPJPE error
on Human3.6M. By parallelizing OpenPose across GPUs, the system achieved 28fps (37ms latency), making it one of
the first truly real-time multi-view multi-person systems.

Real-time spatiotemporal 4D association graph In 2020, Zhang et al. [183] proposed a 4D association graph for
joint cross-view and temporal matching optimization. The method runs at 25fps with 5 cameras and 5 persons, using
OpenPose detections weighted in a 4D graph with epipolar distance and temporal distance losses. A Kruskal matching
algorithm [79] assigns limbs to persons, with bone lengths used for identity tracking. Then, a parametric SMPL [92]
§3.1.2 skeleton is fitted to filter the 3D joints. Processing times are 22.9ms for OpenPose (for a batch of 5 cameras on
an Nvidia Titan X GPU), 11ms for graph solving, and 4ms for SMPL optimization. The method scales linearly with
cameras but non-linearly with persons due to graph size. It achieves 2% higher PCP than Mvpose [39] §2.2.2 on Shelf
dataset. The following year, Zhang et al. [184] extended this to include hand and face pose estimation, making it the
first real-time body-face-hands multi-view multi-person method.
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Method Type MPJPE(mm) Lat(ms) Pers. Views Key Features

+ explicit constraints
3DPictorial §2.2.2 Pictorial - 105 O(n?) Multi complexity

+ bottom-up
OpenPose §2.2.1 CPM - 40 O(1)  Single 4 speed

+ bottom-up limb
4D Graph §4.3 CPM 51.3 (Camp) 40 O(n)  Multi 4 cross-view

.+ Efficient matching

Mvpose §2.2.2 CPM 57.3 (Pano) 50 O(n)  Multi + RANSAC triangulation

+ body model
VIBE §2.3.2 SMPL  569(G3DPW) 161  O(n) Single  op-down bottleneck
ROMP §2.2.1 SMPL 60.5 3DPW) 333 0(1) Single  + constant time

+ volumetric fusion
VoxelPose §4.5.1 Voxel 19.5 (Pano) 110 O(1) Multi 4 constant time
FastVoxPose §4.5.1 Voxel 18.26 (Pano) 33 O(1)  Multi *+speed

+ volumetric
TEMPO §4.5.1 Voxel 14.68 (Pano) 34 O(1) Multi 4 multi-view fusion

+ voxel-keypoint fusion
SelfPose3d Voxel 24.5 (Pano) 80 O(1) Multi 4 constant time

+ voxel-keypoint fusion

VoxelKeypointFusion — Voxel 47.8 (Pano) 238 O(1)  Multi + constant time

Table 2: Comparison of multi-person markerless architectures with computational complexity scaling properties

4.4 Epipolar feature pooling for 3D pose regression

Following monocular top-down approaches, some methods detect 2D poses, match features across views, and regress
3D poses. EpipolarPose [74] pioneered multi-view single-person pose estimation using epipolar matching of 2D joints
for 3D regression. However, its volumetric convolutions with cubic complexity prevented real-time performance. This
approach was later extended to multi-view multi-person methods.

Graph optimization for cross-view feature pooling Wu et al. [167] proposed a two-step method using graph models
to first localize body centers and then regress 3D joint positions. Their Multi-view Matching Graph Module aggregates
features across cameras using epipolar geometry and body topology, followed by a Center Refinement Graph Module
that efficiently samples 2D features. Compared to VoxelPose [147] §4.5.1 which requires 128,000 queries per frame,
this method needs only 1,830 queries while achieving 15.84mm MPJPE on CMU Panoptic [72]. The method runs at
10fps with 4 persons, but it decreases to 8fps with 5 persons due to linear scaling of the person refinement cost (6.8ms
per person).

Real-time multi-view joints clustering In 2022, QuickPose [191] proposed a fast multi-view multi-person matching
framework using only OpenPose [21] §2.2.1 2D joint positions. The method enumerates possible skeletons from 2D
joints in each view using a tree-structured graph. Multi-view joint association is done by clustering joints into persons
based on maximizing a skelefon affinity score, built from epipolar joints distance [183] §4.3 and part-association scores.
Then, 3D poses are computed via triangulation after clustering. The single-threaded clustering algorithm achieves 30fps
(30ms) for 8 views with OpenPose parallelized on four RTX2080 GPUs at 800x600 resolution. Computational cost
scales linearly with cameras (Ims per camera) and persons (1ms per person). While ten times faster than Zhang et al.
[183] on Shelf benchmark, MPJPE accuracy on standard datasets is lower. Authors argued about the accuracy-latency
trade-off. Moreover, their method was not dependent on a learning of the scene to extract 3D poses. While this lowers
accuracy, it also makes this method generalizable and easy to deploy in any unseen scene, whereas learning-based
methods need to retrain.

FusionFormer [18] proposed a calibration-free multi-view transformer leveraging temporal information. Using ViTPose
[172, 173] for 2D pose estimation, it achieved 15.1mm MPJPE on Human3.6 [66] §3.2.1 with 4 views and 27 frames,
outperforming Cascaded Pyramid Network [26] (25.4mm MPIJPE). On TotalCapture [146], it reached 21.7mm MPJPE
with ResNet101 [58]. While more efficient than MTF-Transformer+ [130], it lacks multi-person support and latency
metrics.
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4.5 Direct multi-view voxel representation to 3D pose regression

In comparison with the previous 2D detection methods, some methods directly lift backbone features to a 3D voxel
representation, bypassing 2D detection. The voxel space discretization requires balancing precision and speed for the
scene size. We refer to Figure 4c for the architecture.

4.5.1 Voxel features representation

These methods fuse multi-view features into a unified voxel space for global scene understanding. Due to memory
constraints, voxel resolution must be reduced for large scenes. All methods follow a two-stage top-down approach with
person detection then pose estimation, typically using pre-trained 2D detectors like COCO for initial feature extraction.

Bottom-up 3D part-affinity field Light3DPose [42] extends 2D Part-Affinity Fields to 3D by projecting 2D heatmaps
into voxel space. Using a lightweight MobileNet-VI backbone [64, 106] and V2V volumetric projection layer, it
generates 3D joint heatmaps and Part-Affinity Fields. With a simplified 12-limb skeleton, it achieves 5fps (146ms) for 5
views and 4 persons on GTX 1080. The V2V layer has a fixed 125ms cost, while backbone cost grows linearly but
slowly (3ms per view). As a bottom-up method, performance should be person-count invariant, though this was not
evaluated. Unfortunately, with no source code released, we cannot benchmark the method in our comparison.

VoxelPose voxels features representation [147] is a two-step end-to-end method using voxel scene representation.
Features from each view are aggregated into 3D voxels with epipolar projection of 2D joint heatmaps, similar to
Learnable Triangulation [68]. Due to memory constraints, it uses dual resolutions: a low-resolution (8m x 8m X 2m at
80 x 80 x 20 voxels) for person detection via a Cuboid Proposal Network, and high-resolution (2m X 2m X 2m at 64
X 64 x 64 voxels) for per-person joint regression via a Pose Regression Network. The method nearly matched the
MPIJPE accuracy of [68] with 19mm reported instead of 17.7mm, all while being faster. However, this method is not
real-time with 320ms per frame (3fps, measured by [160] as the original paper did not report speed) on CMU Panoptic
with an Nvidia RTX 2080Ti GPU, with a linear scaling per person due to the per-person pose regression.

Recently, Song et al. [135] proposed a two-step approach: first, a local then a global optimization network are used
to optimize the 3D joint positions, benchmarked on Campus and Shelf. Srivastav et al. [137]’s SelfPose3d modified
VoxelPose to enable self-supervised training without 3D ground truth by using HRNet 2D poses and cross-view geometric
constraints. The method achieves 96.4% AP50 and 24.5mm MPJPE on CMU Panoptic, comparable to fully-supervised
approaches despite not using any 2D or 3D ground truth labels. Key innovations include: (1) adaptive supervision
attention with hard attention for L1 joint loss and soft attention for L2 heatmap loss to handle noisy 2D poses, (2)
cross-affine-view consistency with random rotations and scaling for geometric constraints, (3) self-supervised 3D root
localization using synthetic data and root-only regression that enables 10fps inference on an Nvidia RTX4090. The
method demonstrates strong cross-dataset generalization, achieving 95.1% PCP on Shelf [10] without fine-tuning,
outperforming both optimization-based methods like [39] §2.2.2 (96.9% PCP) and fully-supervised approaches like
VoxelPose (96.9% PCP) on this cross-dataset evaluation. Bermuth et al. [12] proposed a learning-free algorithmic
approach that similarly used RTMPose [70] with voxel-keypoint fusion. The method achieves 47.8mm MPJPE at
8.4fps (RTX3090 GPU), with strong cross-dataset generalization demonstrated on Human3.6M [66] §3.2.1 (64.3mm
MPIJPE), Shelf [10] (51.3mm MPJPE), and Campus (84.4mm MPJPE) without any retraining. Key innovations include:
(1) person-id images for joint association, (2) bottom-up joint detection with voxel-based triangulation, (3) outlier
filtering in 3D space. The authors also evaluated depth sensor integration through voxel masking, which reduced invalid
detections, but it decreased precision and framerate due to imperfect depth-color synchronization.

VoxelTrack bottom-up 3D joints from voxels features Zhang et al. [182] extends VoxelPose with temporal tracking
using heatmaps and person Re-ID features fused into 3D voxels. An occlusion detector triggers Re-ID tracking when
needed. The method uses sparse 3D convolutions for efficiency and follows a bottom-up approach: detecting 3D joints
before grouping them with an Ambiguity Resolution Network in a 32° voxel space. Processing cost increases by only
2.72ms per person, plus 2.5ms for Re-ID. Operating in a 10 x 10 x 4m space (160 x 160 x 64 voxels). A fast version
is proposed that leverages a MobileNet-V2 backbone [123] and it achieved 15fps with 5 views on an Nvidia 2080Ti
GPU.

TesseTrack spatiotemporal voxels Reddy et al. [115] introduced 4D CNNs to process voxel representations of 5
previous frames. Following VoxelPose’s pipeline, it first detects persons in 3D voxel features, then crops and aggregates
4D spatiotemporal voxels (tesseract) per person for 3D pose regression. The method achieved remarkable 7.3mm
MPJPE on CMU Panoptic (13.1mm without temporal tracking), but ran below 1fps on two 32GB Tesla V100 GPUs
due to 4D CNN costs. View scaling matches VoxelPose (+30ms/view), but person scaling is higher (+40ms/person)
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from 4D processing. We refer the reader to the original paper for further metric comparison, given that the method’s
source code is not open sourced, and we therefore cannot integrate it into our comparison.

Real-time Faster-VoxelPose The first real-time voxel representation method was Faster-VoxelPose [176], which ran
at 30fps on the CMU Panoptic dataset [72] §3.2.1, with 5 persons in the scene, with a MPJPE of 18.26mm. It represents
a significant milestone in real-time methods and will likely see further improvements as models continue to advance.
The method is an improvement of VoxelPose [147], detailed in §4.5.1. It represented the voxel features as three separate
and orthogonal 2D planes. The same two step approach is kept: a coarse person detector and a fine joint estimation, but
the 2D plane representation makes the method ten times faster than VoxelPose. The expensive 3D CNNs are replaced by
2D CNNss for a massive speedup. For the joint estimation step all features outside the detected human body’s bounding
box are ignored for efficiency. We notice that the computational cost scales linearly with the number of persons in the
scene but stays below 15ms for up to 5 persons.

Shuai et al. [131] proposed a similar method to FasterVoxelPose to solve close human interactions, but is not real-time.
The approach was evaluated on the [47] and [177] datasets which focus on close interactions between 2 persons. The
method introduced a novel two-stage pose estimation network to handle the challenges of close interactions. First, a
cleaned 3D heatmap volume of all keypoints are filtered by a CNN, then a second stage estimates per-person keypoint
probability volumes while suppressing responses from other individuals. The method proposed a simple keypoint
temporal filter with a threshold of a 5cm motion between frames. It achieved significant improvements in accuracy
with a MPJPE of 20.28mm and PCK@50 of 98.29% on the difficult Hi4D dataset. Recently, Zhuang and Zhou
[192] improved upon FasterVoxelPose by introducing two key innovations: a depth-wise projection decay (DPD) and
an encoder-decoder network (EDN). The DPD addresses depth ambiguity by applying a Gaussian decay centered
on the estimated root depth when constructing voxel features, rather than using uniform epipolar projection. The
EDN processes re-projected voxel features through parallel decoders with deconvolution skip-connections for richer
multi-scale information fusion. The method achieved a MPJPE of 17.42mm on the CMU Panoptic dataset [72] §3.2.1
while maintaining real-time speed at 30.5fps on an Nvidia RTX 2080 Ti GPU. The improvements were particularly
significant with fewer cameras, reducing MPJPE by 19% and 46% with two and one views respectively compared to
FasterVoxelPose [176]. The method also demonstrated strong performance on other datasets, achieving 96.4% and
97.7% PCP3D on Campus and Shelf [10] respectively. Unfortunately the code of this method is not open sourced, so
we cannot integrate it into our comparison.

Real-time spatiotemporal voxel representation Recently, TEMPO [31] introduced a fast spatiotemporal voxel
representation of features, similar in spirit to TesseTrack’s [115] spatiotemporal 4D CNNs, but real-time (30 times faster),
running at 29.3fps on an Nvidia A100 GPU, and with a 10% lower MPJPE of 14.68mm on the CMU Panoptic dataset.
It has the same speed as FasterVoxelPose [176] but with a lower MPJPE. The method is a three-step method based
on VoxelPose’s voxel representation for person detection, FasterVoxelPose’s 2D CNNs, with TesseTrack’s temporal
tracking with a simple recurrent network. First, a backbone extracts features on each view, which are unprojected to a
3D voxel representation, from which only a fop-down bird’s-eye view is kept with a maxpooling. From these top-view
features, a 2D CNN produced a person body center heatmap, which is sampled to get the top K locations of body center
points. At this point coordinate, the vector of features in the 3D voxel representation is passed to a 1D CNN to regress
the body joint’s height location, so that the body center’s 3D position is inferred. Similarly for the network training,
each person’s body bounding box is regressed from the body center’s 3D position with a multi-headed 2D CNN on the
3D voxel representation. Each bounding box is defined by its width, length and center. Each 2D view’s features are
cropped based on the bounding boxes, then unprojected to three separate orthogonal planes, like in FasterVoxelPose.
Finally, three separate 2D CNNss infer the joint positions heatmaps in each plane, and top-k parsing gives the full 3D
body joint positions, like in FasterVoxelPose.

TEMPO introduced temporal tracking in the form of the top-down bounding box of each person, tracked with the
off-the-shelf SORT [13] Kalman-filtered tracker. From the bounding boxes in the previous frames, each person’s three
2D separate orthogonal unprojected feature planes are taken as the tracker input. Spatial Gated Recurrent Units [8] take
the tracker features, center positions and the cropped three separate orthogonal features planes from the previous frame,
and output the current and the next frame 3D body joint positions. Authors noted that TEMPO has a similar tracking
accuracy as VoxelTrack §4.5.1, but without any reidentification features (Re-ID) and at a fraction of the computational
cost as it only used the fop-down view’s person bounding box for tracking, whereas VoxelTrack tracked every joint for
every view. The method is trained on CMU Panoptic and the generalization to other camera layouts is evaluated on
Human3.6M [66] §3.2.1. The authors found that the accuracy is worse when the training is not done on the evaluation
scene, but this can be mitigated by training on both the CMU Panoptic and Human3.6M datasets, with a reasonable
30mm MPIJPE §3.2.2. TEMPO is the first method to also perform next-frame prediction in a multi-view multi-person
setup, whereas VoxelTrack only tracked on past frames. The pose prediction capability of the model makes its output
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more accurate with temporally smoothed poses. Thus, the AP50 §3.2.2 accuracy of 89% and the MPJPE of 14.68mm
are better than FasterVoxelPose.

4.5.2 Plane sweep depth representation

PlaneSweepPose [86] introduced depth cues features from pair of stereoscopic cameras as an alternative to voxels
for avoiding cross-view matching. 2D poses are projected onto 64 virtual planes, with a coarse-to-fine approach that
first regresses full body depth, then individual joint depths within [—1, 1] meters. Finally, 3D poses are computed by
back-projecting 2D poses with depths. This avoids voxel memory costs through viewpoint-dependent depth planes. On
Shelf (5 views, 4 persons), it achieved 16.75Smm MPJPE, slightly worse than VoxelPose’s 17.68mm, but it ran 20x faster.
On CMU Panoptic, it ran at 4.3fps with 5 views [31] and a mean of number of 3.4 persons in the scene on an Nvidia
A100 GPU with a ResNet50 [58] backbone.

4.5.3 Multi-view multi-person transformers representation methods

Transformer architectures with Attention modules [149] provide efficient multi-view feature pooling as an alternative to
to the voxel representation. The attention mechanism fuses features across views by querying selected locations, enabling
learned cross-view pooling at minimal computational cost, similar to epipolar parsing, but with more understanding
gathered from the learning of the multi-view setup and the human body knowledge.

MyP direct regression approach with Transformers In comparison with VoxelPose which needed to project each
view’s heatmap into the voxel representation, MvP (Multi-View Pose transformer) [160] directly regressed multiple
person’s 3D poses by using a new Projective Attention model that queries features at the supposed 3D joint positions.
An implicit body skeleton model is learned, so that the Transformer module can query cross-view features at the right
position. For each joint, a positional embedding is learned (named joint query) and a Projective Attention module
fused multi-view features and assigned each joint to its corresponding person. The Projective Attention is a constrained
Attention module that projects the estimated 3D joint location as the anchor point in each view, then queries a limited
set of per view 2D local feature points (2 or 4 points), near the projected 3D point, with a deformable convolution. This
scheme is efficient, but would not generalize to different camera layouts, thus an augmentation strategy is added: a
weighted multi-view global pooling of each feature, done for each query. For each query specific to a view, retrieved
features will have some features of from the other views weighted in. The method is not real-time, running at 6fps
(170ms per frame) on an Nvidia RTX 2080Ti, with a constant latency regardless of the number of persons, thanks to the
transformer queries, which is a big improvement over VoxelPose. Finally, the MvP method has a 9% better accuracy
than VoxelPose on CMU Panoptic [72] §3.2.1 and a 12% lower MPJPE §3.2.2, with 15.8mm.

Epipolar Transformers features fusion Transformers have been a promising neural network-based representation
since their 2017 definition [149], as they can manipulate complex and weakly correlated inputs, replacing convolutions
or recurrent networks. The Epipolar Transformers [60] method proposed a single-person multi-view 3D pose estimation.
It leveraged epipolar lines to sample a fixed number of feature vectors from a backbone network in other views, and
weighted them based on their similarity, like [1 1 1] but more efficient. All features are fused across all the views, and
a final 3D feature is built for the original 2D detection point. From this 3D features representation, any human body
representation can be regressed, here with a 3D pictorial structures model [16] §2.2.2. Cameras must be calibrated to
apply the epipolar geometry. The authors evaluated the method on Human3.6M with a MPJPE §3.2.2 of 19mm, that
nearly matches LearnableTriangulation’s [68] 17.7mm at a lower computational cost. However, this method cannot
work with multiple persons, as a person detector and person matching would need to be integrated before the Epipolar
Transformers module.

Recently, PETR [128] introduced a novel transformer-based architecture for end-to-end monocular multi-person pose
estimation. The method views pose estimation as a hierarchical set prediction problem, using multiple pose queries to
directly reason about full-body poses. A pose decoder first predicts instance-aware poses, followed by a joint decoder
that refines the poses by exploring kinematic relations between body joints. The attention mechanism allows the model
to adaptively attend to features most relevant to target keypoints, helping overcome feature misalignment issues. The
PETR-R50 model achieves 67.6 AP on COCO test-dev §3.2.1 with a ResNet50 [58] backbone, outperforming previous
multi-stage methods like PifPaf [76] with a 3 times faster speed at 89ms per frame on an NVIDIA V100 GPU. While
currently designed for monocular pose estimation, the transformer-based architecture of PETR could be extended
to multi-view scenarios by incorporating cross-view attention mechanisms similar to Epipolar Transformers. The
hierarchical pose queries could be augmented to reason about 3D poses across multiple views, potentially offering an
efficient end-to-end approach for multi-view pose estimation.
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VitP: volumetric transformer Transformers are a powerful learning-based method for multi-dimension manipulation.
VtP [28] introduced Transformer-based voxel pooling instead of classical 3D CNNs. The first part of the method is
similar to VoxelPose, a Cuboid Proposal Network regresses each person’s global position. From the cropped feature
voxels of each person, a transformer regressed each joint’s 3D poses. The authors discussed the quadratic cost to the
data size of the transformer self-attention. Their solution is to limit the use of the transformer to a low dimension
embedding of the voxel features, but the embedding might lose some information with a small size. Unfortunately, the
paper did not disclose any latency timing, but the accuracy metrics are well reported, and we choose to integrate this
method into our comparison as the only volumetric transformer. As a top-down method, the computational scaling
should be linear to the number of persons in the scene. The backbone with the volumetric projection should also be
similar to VoxelPose, thus the scaling to the number of viewpoints should be less than ideal. For these reasons real-time
performance is currently not achievable.

5 Comparative Analysis

Following the overview of the different architectures, we propose an exhaustive comparison based on the same reference
datasets. We will evaluate the accuracy, latency, and the computational scalability of the different methods.

5.1 Accuracy and latency trade-off

The main markerless trade-off is to achieve the best accuracy with the lowest latency. Here, we establish clear
benchmarking criteria to enable fair comparisons between methods. We benchmark methods on the reference multi-view
multi-person CMU Panoptic dataset [72], detailed in §3.2.1. To ensure consistent evaluation, we follow the standardized
benchmark procedure from [147], using a fixed set of 5 cameras (index 3, 6, 12, 13, 23), test sequences: 160906_pizzal,
160422_hagglingl, 160906_ian5, 160906_band4 (excluding 160906_band3), input resolution: 960 x 512 pixels,
backbone network: ResNet50 [58], input resolution: 960 x 512 pixels, backbone network: ResNet50 (unless otherwise
noted), Nvidia RTX 4090 GPU.

The benchmark was reproduced using the XRMocap open-source toolbox [33]. We evaluate methods using three
standardized accuracy metrics: Average Precision (AP §3.2.2), Mean Per-Joint Position Error (MPJPE §3.2.2),
Percentage of Correct Parts (PCP3D §3.2.2). Results are presented in Table 3 for CMU Panoptic and Table 4 for
Campus and Shelf benchmarks. Some methods deviate from our standard evaluation setup: VoxelTrack §4.5.1 uses a
DILA-34 backbone instead of ResNet50 [58]. We include it as the only bottom-up voxel method, noting that DLA-34 has
comparable computational cost to ResNet50 on the RTX4090. TesseTrack §4.5.1 is excluded as its source code is not
released and it uses the more computationally intensive HRNet backbone. QuickPose §4.4 uses OpenPose [21] §2.2.1
for 2D joint detection. While its code is not open, detailed supplementary materials allow inclusion. We apply a latency
penalty as results were reported on an Nvidia RTX2080Ti rather than our reference RTX4090.

Figure 5 shows the trade-off between accuracy (A Ps) and latency on the CMU Panoptic benchmark. Recent methods
like TEMPO [31] §4.5.1 and Faster-VoxelPose [176] §4.5.1 achieve the best balance, with more than 98% accuracy
while maintaining latencies around 35ms on an RTX4090. This represents a significant improvement over earlier
methods like VoxelPose [147] §4.5.1 which had higher latencies (>300ms) for similar accuracy levels. The graph
demonstrates the clear trend toward methods that optimize both metrics simultaneously, rather than trading one for

Method APos T APx T APypo T APqx5 1  MPIJPE | Latency (ms)|
Learnable Triangulation [68] - - - - 12.85 500
MVpose [39] §2.2.2 - - - - 81.17 50
VoxelPose [147] §4.5.1 83.59 98.33 99.76 99.91 17.68 313
VoxelTrackt [182] §4.5.1 79.34 96.83 99.58 - 18.49 57
Wuetal. [167] §4.4 - 98.10 - - 15.84 125
VtP [28] §4.5.3 83.79 97.14 98.15 98.40 17.62 -
PlaneSweepPose [86] §4.5.2 92.12 98.96 99.81 99.84 16.75 233
MvVP [160] §4.5.3 92.28 96.6 97.45 97.69 15.76 278
QuickPoset [191] §4.4 - 27.5 - - 27.5 30
Faster-VoxelPose [176] §4.5.1 86.66 98.08 99.26 99.53 18.41 32
TEMPO [31] §4.5.1 89.01 99.08 99.76 99.93 14.68 34

Table 3: Accuracy AP, MPJPE (mm) and latency comparison on CMU Panoptic, 5 views, ResNet50 backbone, input
resolution of 960 x 512. t indicates a DLA-34 backbone and  OpenPose, both on RTX2080Ti instead of ResNet50 on
RTX4090.
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Campus 3 cam, 3 pers Campus 5 cam, 4 pers

Method PCP3D1T MPIJPE] PCP3D{1 MPIJPE] Latency (ms))
MVpose [39] §2.2.2 96.3 84.5 96.9 55.3 50
VoxelPose [147] §4.5.1 96.7 78.2 97.0 57.3 313
VoxelTrackf [182] §4.5.1 - 96.7 - 97.1 57
Wuetal. [167] §4.4 - - 97.7 - 125
VtP [28] §4.5.3 96.3 80.1 97.3 56.3 -
PlaneSweepPose [86] §4.5.2 97.0 - 97.9 - 233
MvP [160] §4.5.3 96.6 64.1 97.4 52.2 278
4D association [183] §4.3 81.5 287.8 96.4 51.3 40
QuickPosei [191] §4.4 - - 98.1 - 30
Faster-VoxelPose [176] §4.5.1 96.9 - 97.6 - 32
TEMPO [31] §4.5.1 97.3 - 98.0 - 34

Table 4: PCP3D accuracy, MPJPE (mm) and latency on the Campus and Shelf datasets. ResNet50 backbone, input
resolution of 960 x 512. T indicates a DLA-34 backbone and I OpenPose, both on RTX2080Ti instead of ResNet50 on
RTX4090.
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Figure 5: Average Precision A P5y on CMU Panoptic. ResNet50 backbone input resolution of 960 x 512. 1 indicates a
DLA-34 backbone instead of ResNet50.

the other. On the CMU Panoptic benchmark, in Figure 6, both TEMPO and Faster-VoxelPose exceed 98% A Psq with
latencies around 35ms on an RTX4090. Similarly impressive results are seen on the Campus and Shelf datasets, Figure
7, where these methods achieve 97-98% PCP3D §3.2.2 scores. In terms of precision, they demonstrate excellent
performance with MPJPE values around 10mm, significantly outperforming earlier approaches while maintaining
real-time processing speeds.

5.1.1 Scaling to the number of persons

The computational cost scaling with the number of persons varies significantly between methods based on their
architecture. Figure 8 shows how different methods scale with increasing number of people. FasterVoxelPose maintains
consistent latency as views increase, with only small increases per additional person. In contrast, MvP has a fixed
170ms latency for 5 views but increases substantially with more views. Overall, FasterVoxelPose and 4D Association
Graph achieve the best latency scaling.

We can classify methods into two main categories: Botfom-up methods like Mvpose [39] §2.2.2 and 4D association
[183] §4.3 generally scale better with the number of persons since they detect all joints at once before associating
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a DLA-34 backbone and { OpenPose, both on RTX2080Ti instead of ResNet50 on RTX4090.
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PCP3D on Campus and Shelf. ResNet50 backbone input resolution of 960 x 512. 1 indicates a DLA-34
backbone and { OpenPose, both on RTX2080Ti instead of ResNet50 on RTX4090.

them into skeletons. However, they can suffer from accuracy degradation with more people due to increased joint
association complexity. Top-down methods like VoxelPose [147] §4.5.1 and Faster-VoxelPose [176] §4.5.1 have a more
linear scaling since they process each detected person separately. For example, Faster-VoxelPose adds approximately
2.7ms per additional person. While this makes the computational cost more predictable, it can become prohibitive with
many people. Recent methods have made progress in reducing this per-person overhead. TEMPO [31] §4.5.1 maintains
real-time performance (>30fps) with up to 5 people by using efficient feature representations. However, even these
optimized approaches will eventually hit performance limits as the number of tracked individuals grows.
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Figure 8: Methods latency for a constant number of 5 views or 4 persons. ResNet50 backbone input resolution of
960 x 512. { indicates a DLA-34 backbone and { OpenPose instead of ResNet50.

5.1.2 Scaling to the number of viewpoints

The difference in scalability of methods is large, as it depends on their architecture. Figure 8 shows that methods scale
differently with more viewpoints. FasterVoxelPose maintains low latency as views increase, while MvP scales poorly,
taking 170ms for 5 views, and significantly more beyond that.

We notice that the 2D feature extraction cost is mostly linear to the number of views. On recent GPUs, like the Nvidia
RTX 4090, with the default ResNet50 [58] model, it takes Sms to 10ms per view, but this could theoretically be improved
with batch processing and GPU compilation methods (TensorRT). This cost can become negligeable with respect to
the increase of cost as the number of detected persons grows. We noticed that Faster-VoxelPose [176] §4.5.1 TEMPO
method [31] §4.5.1 are the most interesting method, with a slow increase of the latency with the number of views and
persons in the scene.

6 Conclusion

This review analyzes real-time multi-view multi-person markerless motion capture, examining key methods from early
works to current state-of-the-art, highlighting key architectural advances that have enabled significant improvements
in accuracy and efficiency §2. Three dominant architectural approaches have emerged §4: volumetric methods like
VoxelPose [147] §4.5.1, plane sweep methods leveraging multi-view geometry, and graph-based skeletal reasoning.

Recent advances have achieved both high accuracy and real-time performance. VoxelTrack [182] §4.5.1 introduced
temporal consistency through feature tracking, while Faster-VoxelPose [176] §4.5.1 optimized volumetric processing
for efficiency. TEMPO [31] §4.5.1 advanced temporal modeling and feature representations, achieving 34ms latency
with 99.08% AP50 accuracy on CMU Panoptic §3.2.1. Modern methods consistently achieve >97% PCP3D, though
computational scaling remains challenging. Bottom-up methods like MVpose §2.2.2 show better theoretical scaling but
lower accuracy compared to top-down approaches like Faster-VoxelPose and TEMPO.

Looking forward, we identify several promising research directions §6.2: (1) more efficient feature representations and
backbones, (2) improved temporal modeling, and (3) hybrid architectures combining bottom-up scaling with top-down
accuracy. While accuracy remains critical, latency, scalability and robustness challenges persist. Privacy and bias risks
require careful consideration as markerless capture expands across disciplines from biomechanics to entertainment. In
the following section, we propose an overview of the future direction of the markerless field.
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6.1 Applications and future impact

While real-time multi-view multi-person systems are still limited in deployment, their increasing real-world applications
drive research advances across domains.

Emerging applications Reviews by Sarafianos et al. [125] and Wang et al. [158] §2.3.3 identify key applications in
behavior analysis, security, healthcare, sports, and entertainment. The markerless approach enables natural environment
deployment, though cost remains a barrier - single/dual camera setups offer a more practical alternative to full studio
systems.

Human-computer interaction Real-time markerless tracking enables natural full-body VR/AR control [7, 136] with
sub-40ms latency for responsive embodiment. In robotics, it enhances human-robot interaction through accurate gesture
interpretation and motion planning.

Real-time multi-person markerless tracking enables natural group interactions in VR/gaming. Low latency is essential
for immersion [56], with multi-person tracking enabling social presence and collaborative experiences beyond single-
user systems.

Body analysis for sports and healthcare Recent markerless systems enable novel applications in sports science and
healthcare, combining accessibility with growing precision for biomechanical analysis. In sports, real-time tracking
provides biomechanical feedback for performance optimization and injury prevention [5, 153]. Recently, [46] proposed
joint-torques optimization using Mujoco [142] physics to refine 2-person capture, combining multi-view YOLOvS §2.2.1
and ViT-Pose [172] for 3D joints, with SMPL [92] §3.1.2 body fitting to compute physics-based joint-torques. While
not real-time, this method shows the interest of realistic physics-based filtering for a high velocity use-case.

For healthcare applications, while early systems lacked clinical precision [32] §2.3.2, recent methods approach marker-
based accuracy. D’Haene et al. [38] validated a 3-camera Stereolab’s ZED2 setup with YOLOv8x-pose-p6 §2.2.1 against
OptiTrack, achieving RMSE < 5° for hip/knee angles in gait analysis. While some constant biases remained due to
sampling rate differences and kinematic computation methods, their results demonstrated the potential of markerless
systems as accessible alternatives for clinical gait analysis.

Societal and ethical considerations Real-time markerless motion capture raises privacy concerns due to its ability
to operate without consent. Motion data can reveal identifying biometric characteristics [168, 144]. Integration with
autonomous systems like UAVs [122] further emphasizes the need for ethical frameworks governing deployment and
transparency. Open-source markerless systems based of state-of-the-art research show the potential of the technology
and support the ethical development of the field.

Adversarial attack on neural-networks Pose estimation networks show vulnerability to adversarial attacks. Liu
et al. [88] demonstrated fooling action recognition by modifying VNect [95] pose outputs. [127] found heatmap-based
architectures more robust than direct regression, though perturbed HigherHRNet [30] could generate false joints and
hallucinated limbs. Bottom-up methods proved vulnerable due to dual attack surfaces, but simple defenses like image
flipping showed effectiveness. These insights are crucial for developing more robust markerless systems, particularly
for safety-critical applications.

Bias and Fairness Markerless systems face challenges with algorithmic bias and fairness due to training data
imbalances §3.1.3. Current fairness research has been conducted on Deep Learning-based vision recognition systems [ 15,
163, 57, 4, 169]. These algorithms are a building block of human pose estimation, and progress in the field should limit
issues in the markerless tracking. Analysis of datasets like COCO [87] §3.2.1 shows significant demographic skews [80],
impacting detection accuracy for underrepresented groups like females, darker-skinned and older individuals. These
biases directly impact system performance, leading to degraded accuracy and detection failures for underrepresented
groups. This has far-reaching implications for applications like healthcare diagnostics and human-computer interaction.
The field is addressing this through transparency frameworks like model cards [99] and dataset datasheets [50]. For
example, MoveNet [152] documents performance variations across demographics in its model card.

6.2 Future research directions

Our comprehensive review reveals several key areas that will shape the future of markerless motion capture.

Machine Learning innovations Deep learning has fundamentally transformed markerless pose estimation, with three
key innovations poised to drive future progress: (1) Transformer architectures §4.5.3 enable powerful multi-view pose
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estimation (MvP [160], Epipolar Transformers [60]), though GPU optimization remains needed, (2) large synthetic
datasets [148, 43] §3.2.1 with domain adaptation §3.1.3 enable training without manual annotation, (3) standardized
evaluation protocols §3.2.2 are needed to systematically compare architectures across views and subjects.

Feature representation for pose estimation Our analysis reveals key architectural paradigms for multi-view pose
estimation, each with distinct trade-offs: Volumetric approaches fuse multi-view information in voxel-space for superior
accuracy but higher compute cost. Recent hybrid CNN-transformer architectures with temporal consistency (e.g.,
TEMPO [31]) achieve real-time performance. Top-down methods excel with few viewpoints by leveraging high
resolution, but lose scene context through person-centric cropping. Bottom-up methods maintain global understanding
with fixed computational scaling. Novel volumetric representations like Gaussian splatting [93] achieve 22.1mm MPJPE
on CMU Panoptic, revisiting earlier work [138] with modern deep learning. The key challenge remains balancing
accuracy, computational efficiency, and robustness across varying scene complexities.
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